

AD-A205 470

AND THE WAY

AFWAL-TR-87-2042 Volume VIII

PRODUCTION OF JET FUELS FROM COAL-DERIVED LIQUIDS

Vol VIII - Heteroatom Removal by Catalytic Processing

J.R. Rindt, M.D. Hetland, C.L. Knudson, and W.G. Willson

University of North Dakota Energy and Mineral Research Center P O Box 8213 University Station Grand Forks ND 58202

January 1989

INTERIM REPORT FOR THE PERIOD JANUARY 1988 - AUGUST 1988

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED

AERO PROPULSION AND POWER LABORATORY
AIR FORCE WRIGHT AERONAUTICAL LABORATORIES
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-6553

80 3 61

093

NOTICE

WHEN GOVERNMENT DRAWINGS, SPECIFICATIONS, OR OTHER DATA ARE USED FOR ANY PURPOSE OTHER THAN IN CONNECTION WITH A DEFINITELY GOVERNMENT-RELATED PROCUREMENT, THE UNITED STATES GOVERNMENT INCURS NO RESPONSIBILITY OR ANY OBLIGATION WHATSOEVER, THE FACT THAT THE GOVERNMENT MAY HAVE FORMULATED OR IN ANY WAY SUPPLIED THE SAID DRAWINGS, SPECIFICATIONS, OR OTHER DATA, IS NOT TO BE REGARDED BY IMPLICATION, OR OTHERWISE IN ANY MANNER CONSTRUED, AS LICENSING THE HOLDER, OR ANY OTHER PERSON OR CORPORATION; OR AS CONVEYING ANY RIGHTS OR PERMISSION TO MANUFACTURE, USE, OR SELL ANY PATENTED INVENTION THAT MAY IN ANY WAY BE RELATED THERETO.

THIS REPORT HAS BEEN REVIEWED BY THE OFFICE OF PUBLIC AFFAIRS (ASD/CPA) AND IS RELEASABLE TO THE NATIONAL TECHNICAL INFORMATION SERVICE (NTIS). AT NTIS, IT WILL BE AVAILABLE TO THE GENERAL PUBLIC, INCLUDING FOREIGN NATIONS.

THIS TECHNICAL REPORT HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION.

WILLIAM E. HARRISON III

Project Engineer

CHARLES L. DELANEY, Chief

Fuels Branch

Fuels and Lubrication Division

FOR THE COMMANDER

BENITO P. BOTTERI, Assistant Chief

Fuels and Lubrication Division

Aero Propulsion & Power Laboratory

IF YOUR ADDRESS HAS CHANGED, IF YOU WISH TO BE REMOVED FROM OUR MAILING LIST, OR IF THE ADDRESSEE IS NO LONGER EMPLOYED BY YOUR ORGANIZATION PLEASE NOTIFY AFWAL/POSF, WRIGHT-PATTERSON AFB, OH 45433-6563 TO HELP US MAINTAIN A CURRENT MAILING LIST.

COPIES OF THIS REPORT SHOULD NOT BE RETURNED UNLESS RETURN IS REQUIRED BY SECURITY CONSIDERATIONS, CONTRACTUAL OBLIGATIONS, OR NOTICE ON A SPECIFIC DOCUMENT.

GA H 265470

REPORT D	OCUMENTATION	N PAGE			n Approved 8 No. 0704-0188
1a. REPORT SECURITY CLASSIFICATION		1b. RESTRICTIVE	MARKINGS		
Unclassified		None			
2a. SECURITY CLASSIFICATION AUTHORITY N/A		3. DISTRIBUTION Approved f	/AVAILABILITY OF or public re	REPORT lease; dis	stribution
2b. DECLASSIFICATION/DOWNGRADING SCHEDU N/A	LE	unlimited			
4. PERFORMING ORGANIZATION REPORT NUMBE	R(S)	5. MONITORING	ORGANIZATION REI	PORT NUMBER	(5)
N/A		AFWAL-TR-8	7-2042, Vol	VIII	
6a. NAME OF PERFORMING ORGANIZATION	6b. OFFICE SYMBOL (If applicable)		ONITORING ORGAN Wright Aeron		phoratorios
University of North Dakota Energy & Mineral Rsch Center	(555		lsion Labora		
6c. ADDRESS (City, State, and ZIP Code)			y, State, and ZIP Co		
Box 8213, University Station	•	-	terson AFB O	Н	
Grand Forks ND 58202		45433-6563			
8a. NAME OF FUNDING/SPONSORING	86 OFFICE SYMBOL	9 PROCUREMENT	INSTRUMENT IDE	NTIFICATION N	UMBER
ORGANIZATION	(If applicable)	FY1455-86-	N0657		
8c. ADDRESS (City, State, and ZIP Code)	L		UNDING NUMBERS		
oc. Abbricas (city, state, and 211 code)		PROGRAM	PROJECT	TASK	WORK UNIT
		ELEMENT NO. 63216F	NO. 2480	NO 16	ACCESSION NO.
11. TITLE (Include Security Classification) PROT					
HETEROAIOM REMOVAL BY CATALYTIC	OUCTION OF JET FO PROCESSING	UELS FROM CO.	AL-DERIVED L	IQUIDS, VO	OL VIII -
12 PERSONAL AUTHOR(S)			 		
J.R. Rindt, M.D. Hetland, C.L.					
13a. TYPE OF REPORT 13b. TIME CONTROL 15b. TIME	OVERED 0101 TO 880830	14. DATE OF REPO January 198	RT (Year, Month, D 9	15. PAGE 98	
16. SUPPLEMENTARY NOTATION					
17. COSATI CODES	18. SUBJECT TERMS (C	Continue on revers	e if necessary and	identify by blo	ck number)
FIELD GROUP SUB-GROUP	Jet Fuel, Turb		-		
21 21 07	tion Plant, Co	al Liquids,	Hydrogenatio	n, Heteroa	atoms In:
. 04 05 03	177 - 27 1 - 17 - 1				
19. ABSTRACT (Continue on reverse if necessary In September 1986, the Fuels Br			Inhovetory	at Watcht	Dattaran
Air Force Base, Ohio, commenced					
fuel from the liquid by-product					
Great Plains Gasification Plant					
Department of Energy (DOE), Pit					
experimental portion of this eff					
North Dakota Energy and Mineral					
atoms and the saturation of arc					
tested a processing approach co					
conducted in a one-gallon, hot- conducted to select optimum pro			e. Statisti	car experi	lments were
conducted to select optimum pro	cess conditions	•			
20. DISTRIBUTION / AVAILABILITY OF ABSTRACT			CURITY CLASSIFICA	TION	
SAME AS F	RPT DTIC USERS	UNCLASSIFIE			
22a NAME OF RESPONSIBLE INDIVIDUAL William E. Harrison III		22b. TELEPHONE ((513) 255-	Include Area Code) 6601	AFWAL/POS	

DISCLAIMER

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process or service by trade name, mark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Access	ion For	
NTIS DTIC 3	A	
Unanno Justii	ounced []
	ibution/	
Avai	lability Code	3
Dist	Avail and/or Special	
A-1		¥

FOREWARD

In September 1986, the Fuels Branch of the Aero Propulsion Laboratory at Wright-Patterson Air Force Base, Ohio, commenced an investigation of the potential for production of jet fuel from the liquid by-product streams produced by the gasification of lignite at the Great Plains Gasification Plant located in Beulah, North Dakota. Funding was provided to the Department of Energy (DOE) Pittsburgh Energy Technology Center (PETC) to administer the experimental portion of this effort. This report details the effort of the University of North Dakota Energy and Mineral Research Center (UNDEMRC), who, as a contractor to DOE (DOE Contract Number DE-AC22-87PC90016), modeled the heteroatom removal of the liquids via hydrogenation technologies. DOE/PETC was funded through Military Interdepartmental Purchase Request (MIPR) FY1455-86-NO657. Mr. William E. Harrison, III, was the Air Force Program Manager, Mr. Gary Steigel was the DOE/PETC Program Manager, and Mr. John Rindt was the UNDEMRC Program Manager.

TABLE OF CONTENTS

Section	Page
EXECUTIVE SUMMARY	1
INTRODUCTION	1
PROJECT OBJECTIVES	2
SPECIFICATIONS OF AVIATION FUELS	2
FEEDSTOCK CHARACTERISTICS	2
UPGRADING COAL LIQUIDS TO JET FUEL	4
EXPERIMENTAL DESIGN	4
MATERIALS, EQUIPMENT, AND EXPERIMENTAL PROCEDURES	9
RESULTS OF STATISTICAL MATRIX TESTING	11
Total Heteroatom Content	11
Nitrogen Content	11
Sulfur Content	13
Aliphatic Content and Aromatic-to-Aliphatic Ratio	14
Analysis of Variance	16
Verification of the Predictions of Conditions	16
INTERPRETATION OF TIME SAMPLE DATA	18
MASS BALANCE	21
SINGLE-STAGE PROCESSING	21
SECOND-STAGE PROCESSING	24
CONCLUSIONS	25
RECOMMENDATIONS	26
REFERENCES	26
LIST OF ABBREVIATIONS AND SYMBOLS	27
APPENDIX A STATISTICAL EXPERIMENTAL DESIGN	A1
APPENDIX B DATA TABLES	B 1

LIST OF ILLUSTRATIONS

<u>Figur</u>	<u>re</u> <u>Title</u>	<u>Page</u>
1	Comparison of ASTM D86 distillation profiles of JP-4, JP-8, and GPGP tar oil stream	7
2	Autoclave system used during tar oil upgrading	10
3	Effect of temperature on total heteroatom content over the entire pressure range tested	12
4	Effect of temperature on nitrogen content over the entire pressure range tested	12
5	Detail of the best nitrogen removal conditions	13
6	Effect of a change in pressure on sulfur content	14
7	Effect of temperature on aliphatic content over the entire range of pressures tested	15
8	Effect of temperature on the ratio of aromatic content to aliphatic content over the entire pressure range tested	15
9	Nitrogen content as a function of time during first-stage processing	19
10	Sulfur content as a function of time during first-stage processing	20
11	Hydrogen-to-carbon ratio as a function of time during first-stage processing	20

LIST OF TABLES

Table	<u>Title</u>	<u>Page</u>
1	Properties of JP-4, JP-8, and JP-8X aviation turbine fuels	3
2	Results of the elemental analyses of the GPGP liquid by-product streams	4
3	Proton and carbon-13 NMR data for GPGP liquid streams	5
4	Results of ASTM D86 distillations performed on GPGP liquid streams and AV Jet A	6
5	Matrix for studying effects of temperature and pressure in first-stage processing to remove heteroatoms	8
6	Run conditions for first-stage testing	8
7	Samples sent to Western Research Institute for nitrogen analysis	10
8	Predicted "optimal" first-stage processing conditions for GPGP tar oils	17
9	Comparison of feedstock with predicted and actual results of verification runs	18
10	Results of gas analysis of Run N-414	22
11	Liquid recoveries during heteroatom removal	23
12	Results of single-stage processing	23
13	Results of second-stage processing	24

EXECUTIVE SUMMARY

In an effort to assure adequate supplies of aviation turbine fuels in the event of a petroleum shortage, the U.S. Air Force has investigated the use of coal-derived liquids to produce synthetic aviation fuel. This report details the results of research performed at the University of North Dakota Energy and Mineral Research Center on liquid by-product streams from the Great Plains Gasification Plant (GPGP) in Beulah, North Dakota. The primary research objective was to assess the technical and economic feasibility of producing aviation turbine fuels from coal liquids streams. A secondary objective was to assess the possibility of converting the by-product streams into a new, higher-density aviation fuel. To accomplish these objectives, the by-product streams were characterized to determine which streams, if any, were suitable for upgrading; the tar oil stream was found to be suitable. A twostage upgrading method was chosen; heteroatoms were removed in the first, more severe, stage and hydrogenation took place in the second stage. Processing was performed in a one-gallon, hot-charge autoclave system. A statistical experimental design was used to efficiently determine the "optimum" conditions necessary for heteroatom removal during the first-stage processing. Verification runs performed at the indicated optimum conditions resulted in virtually complete removal of heteroatoms. The total mass balance on liquid product corroborated the analytical workups. Second-stage processing of the first-stage product did not result in the necessary increase in aliphatic content. The fact that the aliphatic content did not increase is probably a result of choice of catalyst and/or the conditions under which the secondstage processing was performed. The results of this research indicate that catalyst choice may greatly influence the product obtained. The first-stage products which were obtained appear to be excellent candidates for highdensity fuels due to their high aromaticity; however, the second-stage catalysts which were used were not effective in converting aromatics to cyclic aliphatics to produce a product with the required low aromatic content.

INTRODUCTION

Domestic production currently supplies only approximately 60 percent of the United States' petroleum requirements, and future oil supplies, both domestic and foreign, will continue to be unreliable. Synthetic liquid fuels are therefore an essential part of an energy scenario which provides the United States with a means to reduce its reliance on imported oil. The Department of Defense is the largest single consumer of liquid fuels in the United States, with the U.S. Air Force using approximately 240,000 barrels of Grade JP-4 turbine fuel daily for aircraft operations. A naphtha-based fuel, JP-4 is used primarily in the U.S., while a kerosene-type fuel, JP-8, is used abroad. Because of the need to assure adequate supplies of both JP-4 and JP-8 fuels at acceptable costs, the Air Force has investigated the characteristics, cost, and yield of these fuels when produced from tar sands, shale oil, and heavy oils, and is seeking similar data for coal-derived liquids.

One producer of coal-derived liquids is the Great Plains Gasification Plant (GPGP) in Beulah, North Dakota. The plant currently produces over 150 million cubic feet per day of high-Btu synthetic natural gas (SNG) from North Dakota lignite. In addition, GPGP generates three liquid streams (rectisol naphtha, crude phenol, and tar oil) which are candidates for upgrading to jet fuel.

PROJECT OBJECTIVES

The primary objective of this project was to assess the technical and economic feasibility of producing aviation turbine fuels from the GPGP by-product streams. A secondary project objective was to assess the possibility of converting the by-product streams into a new, higher-density aviation fuel.

SPECIFICATIONS OF AVIATION FUELS

Aviation turbine fuels have a specific gravity of approximately 0.7-0.8, a minimum hydrogen content of approximately 13.0 weight percent, a maximum boiling temperature of approximately 320°-330°C, and a maximum aromatic content of 25 volume percent. The properties of the JP-4 and JP-8 aviation turbine fuels used by the U.S. Air Force are listed in Table 1. The table also compares the properties of these fuels to the preliminary specifications for the higher-density near-term JP-8X.

FEEDSTOCK CHARACTERISTICS

As mentioned previously, three liquid streams (rectisol naphtha, crude phenol, and tar oil) are produced at the GPGP as a result of coal gasification. Complete characterizations of the three streams were performed and reported by Knudson (1) and Rossi (2). An overview of the characteristics of these streams is presented here.

The rectisol naphtha stream contains primarily benzene and toluene, the crude phenol stream contains primarily phenols and cresols, and the tar oil stream is comprised mainly of methylated one- and two-ring aromatics. Table 2 presents the results of elemental analyses and, Table 3 presents the results of NMR analyses of the three streams.

The tar oil stream is the only stream with enough material in the correct boiling range to warrant consideration for upgrading to jet fuel. The rectisol naphtha stream is very volatile, and only a small portion of it is in the volatility range of a jet fuel. The distillation distribution of the crude phenol stream overlaps that of aviation fuel; however, due to its composition (primarily phenol and the cresols), it would produce cyclohexane and methylcyclohexane during hydrogenation and would therefore consume a large quantity of hydrogen. The results of ASTM D86 distillations performed on the three coal liquid streams and an aviation fuel, AV Jet A, are presented in Table 4. As the table shows, the tar oil stream contains sizable fractions in the aviation fuel distillation region. The ASTM D86 distillation profile of the tar oil stream is compared to the profiles of JP-4 and JP-8 in Figure 1.

As recovered, the tar oil stream is somewhat variable, depending on coal properties, gasifier operation, gas quenching, and product storage (3,4). It is fairly typical of the products of low-rank coal pyrolysis or carbonization in that it is largely hydrogen-deficient and oxygen-rich in comparison to either direct liquefaction or petroleum products (5,6,7). This tar oil stream contains significant hydroxyl functionality, aiding its retention of 1-4 weight percent water. It can also contain several weight percent coal and char fines, which are dependent upon gasifier operation and, to a lesser extent, upon coal quality (4).

TABLE 1

PROPERTIES OF JP-4, JP-8, AND JP-8X AVIATION TURBINE FUELS

Property	JP-4ª	Jp-8ª	Near Term JP-8X
Specific Gravity @ 15°C/15°C	0.710 - 0.802	0.788 - 0.845	0.850 min
Hydrogen, min wt %	13.6	13.5	13.0
Boiling Range, ^O C (ASTM D-2887)	Report - 320	Report - 330	Report - 330
$H_{\rm C}$, Net Btu/gal x 10^{-3}	b	120.9 min	130 min
Freezing Point, ^O C max	-56	-50	-47
Aromatics, max vol %	25.0	25.0	25.0
Parafffins, vol %			

^a Specification properties from "Handbook of Aviation Fuel Properties," CRC Report No. 350, Coordinating Research Council, Inc., Atlanta, GA, 1983.

The results of the D86 distillation illustrate another problem associated with upgrading the tar oil: the bottoms are unstable at moderate temperatures. Distillation bottoms content can range from under 4 weight percent to over 20 weight percent, depending on the heating rates. This drawback can be easily corrected using any one of a number of mild hydrotreating processes that are commercially proven (8).

The high heteroatom (oxygen, sulfur, and nitrogen) content of the tar oil stream will require well over a thousand scf of hydrogen to remove. The data also show that distillation by itself will not produce clear-cut fractions between high and low oxygen functionality. However, effective fractionation using solvent extraction processes such as the Pitt-Consol or Phenoraffin has been demonstrated commercially with similar streams (8). Thus it appears that removal of the phenols from the tar oil stream by solvent extraction would be the preferred processing option. The phenols could be included with the crude phenol stream for sale as

b Not specified.

TABLE 2

RESULTS OF THE ELEMENTAL ANALYSIS
OF THE GPGP LIQUID BY-PRODUCTS STREAMS^a

Element	Tar Oil	Crude Phenol	Rectisol Naphtha
Carbon	83.76	72.18	87.65
Hydrogen	8.83	7.49	10.12
Nitrogen	0.52	0.28	0.00
Sulfur KF-water ^b	0.39	0.04	0.00
KF-water ^D	1.20	4.48	
THFIC	0.11	0.00	

^a Given in weight percent as-received sample.

phenols or cresylic acids. The remaining two-thirds of the tar oil stream could be hydrotreated to produce jet fuel.

UPGRADING COAL LIQUIDS TO JET FUEL

To produce specification-grade jet fuel from coal-derived liquids, the concentration of oxygen, sulfur, and nitrogen in the feedstock must be reduced to virtually nil, and most of the aromatic rings must be saturated. If saturation can be accomplished without destroying the ring structures, the most economical use of hydrogen is assured.

Upgrading of the coal-derived liquids may be accomplished in a high-severity single stage or in multiple stages (9,10). Product composition can be controlled to a large degree by reaction severity; i.e., temperature, pressure, space velocity, or catalyst composition. The single- or first-stage hydrotreating is designed to remove the heteroatoms from the feedstock. Typical operating conditions include a temperature of approximately 370° C, a pressure of about 2000 psig, and liquid hourly space velocities below 1.0 hr⁻¹ over a commercial Ni Mo catalyst (10,11). Hydrogenation generally takes place during the second stage. This processing requires less severity than either the first-stage or single-stage processing and it may use noble metal catalysts. The high oxygen concentration in the GPGP feedstocks will require a high hydrogen feed ratio during this step (11).

EXPERIMENTAL DESIGN

Determination of "optimum" processing conditions via a one-at-a-time testing method is costly, both in terms of time and project dollars. To gain the maximum amount of information in the most efficient manner, testing was

b Water determined by Karl Fisher titration.

^C Tetrahydrofuran insolubles (0.5 micron filter).

TABLE 3
PROTON AND CARBON-13 NMR DATA FOR GPGP LIQUID STREAMS

Carbon Type	NMR Region, ppm	Tar Oil Area %	Crude Phenol Area %	Rectisol Naphtha Area %
		PROTON NMR		
Aromatic Phenol Acenaphthene -CH ₂ -alpha -CH ₂ -beta -CH ₂ - -CH ₃	9.0 - 5.9 4.4 - 3.5 3.5 - 3.3 3.3 - 1.9 1.9 - 1.5 1.5 - 1.0 1.0 - 0.1	28.3 2.4 0.5 28.4 5.3 23.4 11.7	50.2 16.9 2.1 23.5 1.3 4.8 1.2	38.9 0.4 1.9 22.2 10.5 13.9 12.2
Total Area %		100.0	100.0	100.0
-CH ₂ -/-CH ₃		2.0	4.0	1.1
		CARBON-13 NMR		
Aliphatic, C= Aromatic, C=0 Phenolic Aromatic, =C= Aromatic, =C- Methoxyl Aliph.,-CH ₂ - C alpha C -CH ₃	240 - 187 187 - 160 160 - 149 149 - 138 138 - 95 95 - 60 50 - 36 36 - 27 27 - 17 17 - 0		1.0 0.1 10.2 8.3 65.8 0.2 1.4 2.3 5.2 5.5	2.0 1.1 0.0 2.7 66.7 1.1 4.3 9.7 8.0 4.4
Total Area %			100.0	100.0

performed using a statistical experimental design to enable prediction of the conditions at which heteroatom removal during first-stage processing would be virtually complete. The choice of a particular statistical experimental design is made based upon whether or not the results of the testing are expected to be linear in nature. It was not expected that the heteroatom content of the project of the first stage would be a linear function of the temperature and pressure of the process. For this reason, a central composite design for two factors was used to collect the experimental data. This design allowed the fitting of a general quadratic equation for smoothing and prediction of the data. This class of design allows the experimenter to build upon a two-level factorial design and adds a set of axial points. These axial points, along with a center point, allow the estimation of all pure quadratic terms.

TABLE 4

RESULTS OF ASTM D86 DISTILLATIONS PERFORMED ON GPGP
LIQUID STREAMS AND AV JET A

	Tar Oil	Crude Phenol	Rectisol Naphtha	AV Jet A
Bar. Press (mm Hg)	756	742	731	742
Rm. Temp. (°C)	23	23	24	23
Vol % Distilled IBP 5% 10% 20% 30% 40% 50% 60% 70% 80% 90%	93 135 170 195 210 225 250 263 285 297 303	97 98 185 190 193 193 196 201 210 229 263	43 63 69 76 79 83 86 89 94 102 119	82 173 183 197 205 213 220 228 235 245 260 268
Max. Temp. (^O C)	303	265	132	274
Max. Vol %	92	95	96	98
Residue (wt %)	9.66	5.75	2.80	2.20
Recovery (wt %)	87.68	92.45	96.35	96.21
Lost (wt %)	2.66	1.80	0.85	1.59
Specific Gravity	1.02	1.06	0.82	0.82

Table 5 shows the matrix which was designed for use in the first-stage data collection. For these experiments, Shell 424 was used as the catalyst, and the ranges of temperature and pressure that were evaluated were $328^{\circ}-387^{\circ}$ C and 1500-2500 psig, respectively. The matrix was randomized to ensure that all results were independent. Actual run conditions of the tests as they were performed are listed in Table 6.

After the engineering and analytical data were collected, the responses were analyzed via computer regression analysis. The full model was fit, and a check was made for outlying data points. Following this, a check was made for lack of fit of the quadratic equation and unnecessary terms were eliminated, resulting in a mathematical model.

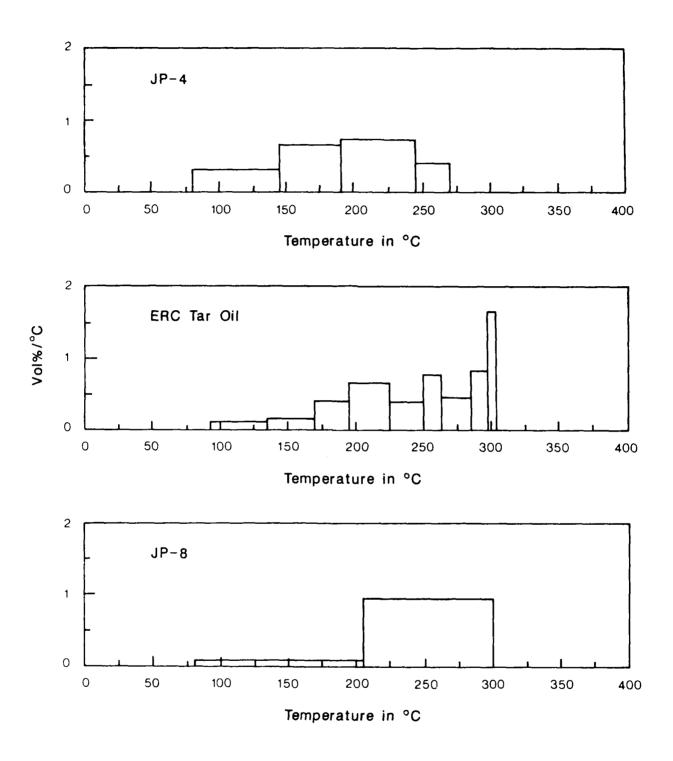


Figure 1. Comparison of ASTM D86 distillation profiles of JP-4, JP-8, and GPGP tar oil stream.

TABLE 5

MATRIX FOR STUDYING EFFECTS OF TEMPERATURE AND PRESSURE IN FIRST-STAGE PROCESSING TO REMOVE HETEROATOMS

Run	Temperature (^O C)	Pressure (psig)
1	387	2500
2	387	1500
3	328	2500
4	328	1500
5	357	2710
6	357	1300
7	400	2000
8	316	2000
9	357	2000
10	357	2000

TABLE 6
RUN CONDITIONS FOR FIRST-STAGE TESTING

Run	Date	Catalyst	Temperature (^O C)	Pressure (psig)
First-Stage	Tests			
N-408	8/05/87	Shell 424	374	2675
N-409	8/11/87	Shell 424	385	1435
N-410	8/13/87	Shell 424	394	2235
N-413	8/28/87	Shell 424	357	1300
N-414	9/01/87	Shell 424	387	2500
N-415	9/02/87	Shell 424	357	2000
N-416	9/03/87	Shell 424	329	1491
N-417	9/04/87	Shell 424	358	2012
N-4: 1	9/18/87	Shell 424	367	1500
N-42.	9/22/87	Shell 424	345	1975
N-432	6/02/88	Shell 424	395	2384
N-433	6/09/88	Shell 424	380	2250
Single-Stag	e Tests			
N-418	9/09/87	NT550	354	2000
N-419	9/11/87	NT550	390	1997
N-420	9/15/87	Katalco 660	394	2023

MATERIALS, EQUIPMENT, AND EXPERIMENTAL PROCEDURES

First-stage testing took place in the Energy and Mineral Research Center (EMRC) one-gallon, hot-charge, semi-batch autoclave system shown in Figure 2. Gas flowed through the system at the equivalent rate of 6500 scf/bbl. Three catalysts were used during these tests: Shell 424, NT550 (nickel-tungsten on an alumina support), and Katalco 660 (nickel-tungsten on an experimental silicon dioxide support). One hundred grams of catalyst and 1 kg of tar oil were used for each test. The catalyst was pre-sulfided at reaction temperature and was batch-charged fresh each run. In the autoclave, the catalyst exhibited high-contact, free-floating behavior. The tar oil-to-catalyst ratio of 5.3 g/g was maintained for each run in an effort to have enough feedstock relative to catalyst such that the catalyst would be seen as if it were in an ebulating bed reactor.

The tests were one hour in duration at reaction temperature, followed by a cooldown to 200°C . To prevent undesirable condensation reactions, the system was held stable at this temperature for 20 minutes, and then was allowed to cool to room temperature. Periodic liquid samples were taken during the run from the bottom of the autoclave, while gas samples were collected in a diaphragm accumulator. Hydrogen flowed through the system continuously during the test.

For each test, a suite of time samples was created by taking a sample every three minutes. Time samples were also taken at the beginning and the end of the 200°C stabilization period. Bulk liquid samples were taken of the feedstock and the endpot, the liquid and solid materials remaining in the reactor at the end of the run after cooldown to room temperature. In addition, two bulk gas samples were obtained for GC analysis. This type of sampling procedure was used because it provided samples often enough to follow changes in both chemical composition and heteroatom concentration, and, when appropriate, to develop kinetic information on the rates of the reactions taking place.

Analyses which were performed on the liquid time samples included percent aromatics and C, H, N, and S elemental analyses. These analyses were performed on samples taken at 3, 6, 9, 18, 27, and 36 minutes during the run and at both the beginning and the end of the stabilization period following cooldown to 200° C. The endpot samples received more scrutiny, undergoing C, H, N, and S elemental analyses, distillation analysis, GC/MS, and other detailed analyses when appropriate. Samples which are listed in Table 7 were sent to Western Research Institute for detailed nitrogen analysis because the analytical equipment available at the EMRC was not sensitive enough to detect the very low nitrogen contents which were expected.

The purpose of the first stage in this type of processing is to remove the heteroatoms from the feedstock prior to hydrogenation. The conditions at which heteroatom removal should most effectively occur were determined using the results of the tests performed as a part of the statistical matrix.

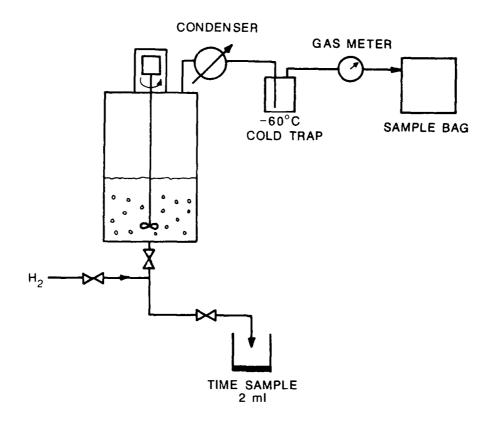


Figure 2. Autoclave system used during tar oil upgrading.

TABLE 7
SAMPLES SENT TO WESTERN RESEARCH INSTITUTE FOR NITROGEN ANALYSIS

Run	Run Time Sample Number	
N-408	1,4,7,10,13,16,19,22,endpot	
N-409	1,4,7,10,13,16,19,22,endpot	
N-410	endpot	
N-413	endpot	
N-414	1,4,7,10,13,16,19,22,endpot	
N-415	1,4,7,10,13,16,19,22,endpot	
N-416	1,4,7,10,13,16,19,22,endpot	
N-417	endpot	
N-418	endpot	
N-419	endpot	
N-420	endpot	
N-421	endpot	
Feed	C/10p0 V	

RESULTS OF STATISTICAL MATRIX TESTING

To arrive at the mathematical models listed in the following subsections, the computer first estimated the parameters. The computer then performed a regression analysis using all of the possible terms: intercept, x, y, x^2 , y^2 , and xy. The computer determined which terms had Prob > F values which were not significant; i.e., had large values. In a backward elimination procedure, the computer dropped the variable which produced the least significant term. The procedure was repeated over and over with the computer dropping terms until all of the remaining terms had significant Prob > F values. The parameters which were estimated when the computer determined that all terms were significant are the coefficients used the final model equation.

Total Heteroatom Content

The results indicate that the heteroatom content of the product is a linear function of the temperature and pressure of the first-stage reaction. This function is defined by Equation (1).

$$HC = 3.43 - 2.04 * X_1 - 0.67 * X_2$$
 (1)

where $X_1=(T-360)/30$, $X_2=(P-2000)/500$, and temperature and pressure are expressed in ^{O}C and psig, respectively. Equation (1) shows that a $10^{O}C$ change in temperature produces a change in heteroatom content that is equivalent to the change produced by a 500 psig change in pressure. The equation was plotted as a function of temperature over the entire range of pressures included in the statistical matrix. This plot is shown in Figure 3. As the plot clearly shows, a total heteroatom content of zero occurs only at a temperature of $400^{O}C$ at pressures of 2650 psig or greater.

Nitrogen Content

Nitrogen content was determined by the statistical analysis to be a nonlinear function of temperature and pressure defined by Equation (2).

$$N = 0.000104 + (0.000041 X1) - (0.000661 X2) - (0.000722 X1X2) + (0.000655 X12) + (0.000602 X22) (2)$$

where X_1 and X_2 are the same variables as were defined for Equation (1). This equation was plotted as a function of temperature over the entire range of pressures included in the statistical matrix, and the plot is presented in Figure 4. It is difficult to determine optimal conditions for nitrogen removal from this plot; therefore, the portion of the plot which indicates that nitrogen contents approaching zero are possible was enlarged, and is shown as Figure 5. This plot clearly shows that any of the temperatures which were tested could result in a nitrogen content approaching zero if the proper pressure is selected. Generally, though, the optimal conditions appear to be between 360° and 380° C and 2275 and 2425 psi.

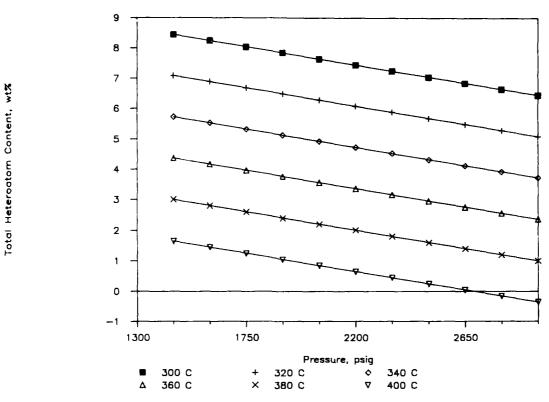


Figure 3. Effect of temperature on total heteroatom content over the entire pressure range tested.

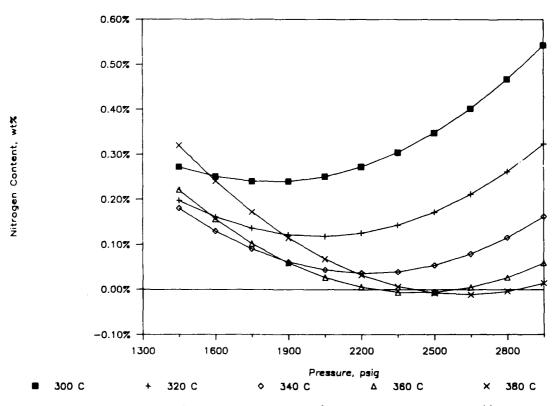


Figure 4. Effect of temperature on nitrogen content over the entire pressure range tested.

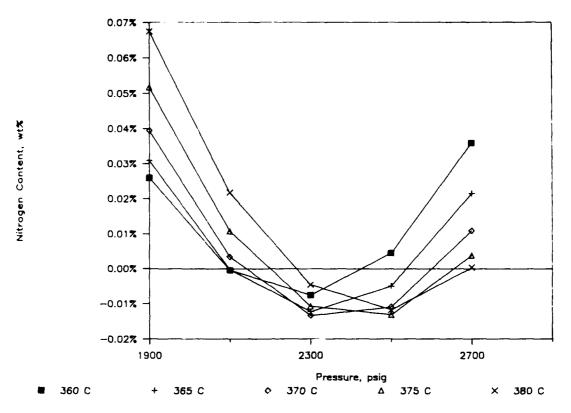


Figure 5. Detail of the best nitrogen removal conditions.

Sulfur Content

The results of the statistical analysis indicated that sulfur content is temperature independent, following the nonlinear function given in Equation (3).

$$S = 0.000159 - 0.000150 X_2 + 0.000427 X_2^2$$
 (3)

where X_2 is defined as for Equation (1). Equation (3) was plotted over the entire pressure range; the result is shown in Figure 6. As the plot shows, the lowest sulfur content, 0.015 percent, can be expected to occur at a processing pressure of 2050 psi. Even at the best conditions for nitrogen removal (i.e., approximately 2300 psi), the sulfur content would be expected to be approximately 0.025 percent.

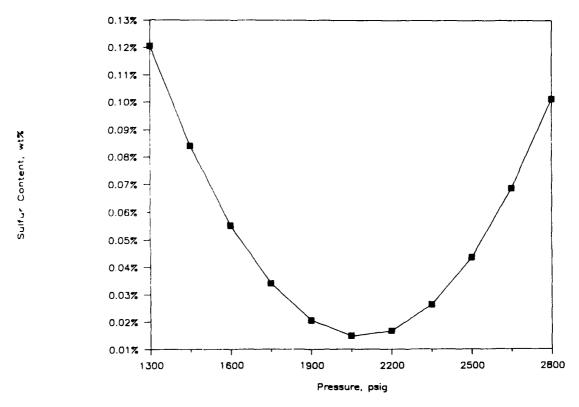


Figure 6. Effect of a change in pressure on sulfur content.

Aliphatic Content and Aromatic-to-Aliphatic Ratio

Equations describing the relationship of temperature and pressure with aliphatic content and aromatic-to-aliphatic ratio were also determined using the analysis of variance. The aliphatic content (ALI CON) of the first-stage product was found to be a linear function of temperature and pressure defined by Equation (4).

ALI CON =
$$48.492 + 3.871 \times_1 + 2.409 \times_2$$
 (4)

where X_1 and X_2 are defined as for Equation (1). The aromatic-to-aliphatic ratio (ARO:ALI) was defined as a linear function of temperature and pressure by Equation (5).

ARO:ALI =
$$1.082 - 0.176 X_1 - 0.099 X_2$$
 (5)

where X_1 and X_2 are again defined as for Equation 1. Equations (4) and (5) were plotted over the ranges of temperature and pressure which were used in the testing, resulting in Figures 7 and 8, respectively. From Figure 8, it can be seen that the highest aliphatic content of the first-stage product is approximately 57 percent, occurring at 400°C and 2800 psi. These are, of course, the conditions at which the aromatic-to-aliphatic ratio is the lowest, as shown in Figure 8.

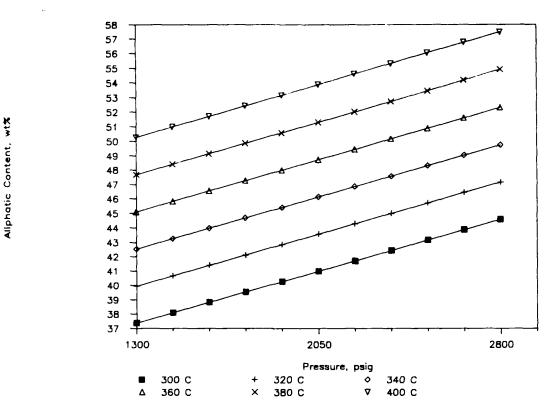


Figure 7. Effect of temperature on aliphatic content over the entire range of pressures tested.

Aromatic—to—Aliphatic Ratio

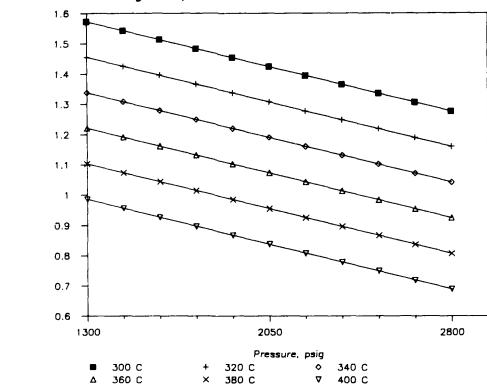


Figure 8. Effect of temperature on the ratio of aromatic content to aliphatic content over the entire pressure range tested.

Analysis of Variance

The complete results of the analysis of variance are presented as Appendix A, while the conditions and results of analyses of all runs performed as a part of the matrix or as verification runs are tabulated in Appendix B. Two criteria of the analysis of variance were used to show that the mathematical models which were derived are statistically valid. The first is the R-square value, which represents the degree of fit of the equation to the data. Generally, R-square values of 0.90 and greater are considered to represent a "good" fit to the data. As the tables in Appendix A show, the R-square values were 0.920, 0.999, 0.740, 0.908, and 0.899 for the heteroatom content, nitrogen content, sulfur content, aliphatic content, and aromatic-to-aliphatic ratio, respectively. Therefore, based upon the degree of fit, it would seem that "good" fits were obtained by all models with the exception of the sulfur content model.

The second criterion is the measure of the interdependency of the variables in the resulting equation. This was calculated for the total heteroatom content equation and can be found in the Correlation of Estimates appearing at the end of the section of Appendix A dealing with this variable. The correlation matrix presents data which show the relationship between variables; i.e., the changes in a variable caused by a change in another variable. Obviously, it is desirable to have independent variables, and a model is generally considered to be a good one if the abosolute values of the correlation coefficients are less than about 0.6. Given this criterion, it can be seen that the model which was calculated for heteroatom content is probably fairly accurate.

Verification of the Predictions of Conditions

The mathematical models were used to predict "optimal" first-stage processing conditions; these conditions are summarized in Table 8. As the table shows, the higher temperatures of 380° - 400° C are predicted to be the most successful at removing heteroatoms and increasing aliphatic content. The higher pressures of 2650-2800 psig are predicted to be the most effective in removing oxygen and increasing the aliphatic content. Intermediate pressures (relative to the matrix) are predicted to be the most successful at nitrogen removal, while lower pressures are predicted to result in the lowest sulfur content. Runs were made at fairly high temperatures of 380° - 400° C and intermediate pressures to verify the results of the mathematical modeling and to produce feedstock for second-stage hydrotreating tests.

Two verification runs were performed: N-432 and N-433. Run N-432 was run at an average temperature of $395^{\circ}C$ and an average pressure of 2384 psig, while N-433 was performed at $380^{\circ}C$ and 2250 psig. Using the mathematical models, predictions were made with respect to nitrogen, sulfur, total heteroatom, and aliphatic contents and aromatic-to-aliphatic ratios of the products. These predictions are compared in Table 9 with the actual results of the analyses performed on the products. When comparing the predicted and actual results, the sensitivity of the analytical equipment must be taken into account. Whereas the mathematical models can predict very small values, the analytical equipment has a detectability limit of 0.01 weight percent.

TABLE 8

PREDICTED "OPTIMAL" FIRST-STAGE PROCESSING CONDITIONS
FOR GPGP TAR OILS

Parameter	Temperature (^O C)	Pressure (psig)
Total Heteroatom Content	400	2650
Nitrogen Content	360 - 380	2272 - 2425
Sulfur Content		2050
Aliphatic Content	400	2800
Aromatic:Aliphatic	400	2800

The models indicate that Run N-432 was performed at an "optimal" pressure for nitrogen removal and fairly close to the pressures required for increased aliphatic content and total heteroatom removal. It must be kept in mind that the "optimal" pressures are different for each of the parameters, and that an intermediate pressure such as 2400 psig will probably produce the best overall results. The temperature at which the run was performed was too high for predicted complete nitrogen removal, but was very close to the "optimum" temperature for the other parameters. Therefore, it would be expected that the product of N-432 would contain small quantities of nitrogen and sulfur, but that total heteroatom content would be low and aliphatic content would be relatively high. As the results listed in Table 9 show, this was the case except that the product sulfur content was less than the sensitivity of the analytical equipment (i.e., 0.01 weight percent).

Run N-433 was performed at the "optimal" temperature of 380° C, but a slightly low pressure for nitrogen and oxygen removal or increased aliphatic content. However, it would seem that there would be virtually complete heteroatom removal in the product of this run and that the aliphatic content would be fairly high. Analysis of the product of this run proved this to be the case, as total heteroatom content was reduced to less than 0.01 weight percent.

To show that conditions which were outside of the predicted ranges would not result in products of desired composition, the product of Run N-423 was examined with respect to the predicted "optimal" conditions. This run was performed at 345°C and 1975 psig, both of which are too low for complete heteroatom removal and relatively high aliphatic content. The pressure of the run was, however, fairly close to the "optimum" pressure predicted for the lowest product sulfur content. The results of the analyses performed on the product show that, although the sulfur content was predictably low, the nitrogen and oxygen contents were unacceptably high and the aliphatic content was low.

TABLE 9

COMPARISON OF FEEDSTOCK WITH PREDICTED AND ACTUAL RESULTS OF VERIFICATION RUNS

Parameter	Feed	N-423	N-432	N-433
Avg. Temp. (OC) Avg. Pressure (psig)	NA ^a NA	345 1975	395 2384	380 2250
Total Heteroatom Content (0 + N + S, wt %)		1973	2304	2230
Predicted Actual	NA 7.41	4.48 5.98	0.54 1.22	_1 ₅ 74
Nitrogen Content (wt %) Predicted	NA	0.026	0.024	0.000
Actual	0.52	0.23	0.06	
Sulfur Content (wt %) Predicted Actual	NA 0.39	0.017 0.08	0.030	0.019
Aliphatic Content (wt %) Predicted Actual	NA 31.9	46.44 45.4	54.86 ND ^C	52.28 ND
Aromatic-to-Aliphatic Ratio Predicted Actual	NA 2.13	1.17 1.20	0.80 ND	0.92 ND

a Not applicable.

The mathematical models were successful in predicting conditions which would be the most likely to produce the desired product composition, as Run N-433 had a total heteroatom content which was below the detectability limits of the analytical equipment. The models also successfully predicted that the conditions of Run N-423 would not result in a desired product composition. The purpose of the models was not to predict exact product composition, but to identify the most appropriate conditions at which to operate the processing equipment. In this regard, the models are considered to have been successful.

INTERPRETATION OF TIME SAMPLE DATA

Time samples were taken during most runs, and the data were analyzed to provide an understanding of the reactions which took place as a function of time. Nitrogen is removed more rapidly during the higher-pressure runs than during the lower-pressure runs. The comparison of nitrogen content as a

^b Actual values of these species are below the detectability limit of the measurement equipment.

C Not determined.

function of time at two temperatures and two pressures is shown in Figure 9. A significant difference can be seen between the two pressures illustrated in this figure, but both show the strong pressure dependence of HDN reactions.

Figure 10 shows that sulfur was removed rapidly during the runs, especially at higher pressures. The figure shows very little difference between runs with respect to sulfur removal with time with the exception of Run N-416 which was performed at the low pressure of 1491 psig. The pressure of this run was not sufficient to remove the sulfur from the feedstock.

The effect of pressure on the hydrogen-to-carbon ratio is shown in Figure 11. As the figure shows, the hydrogen-to-carbon ratio increased the most rapidly and to a higher value when a higher pressure was used.

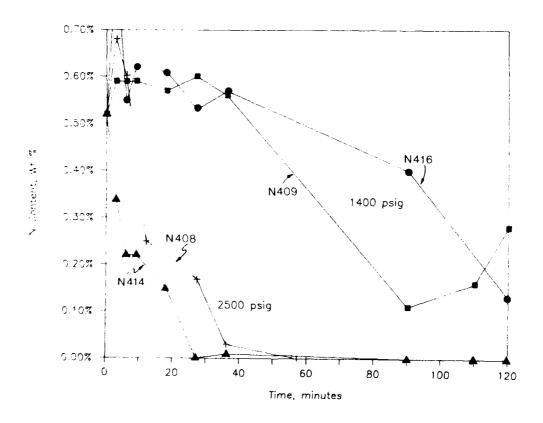


Figure 9. Nitrogen content as a function of time during first-stage processing.

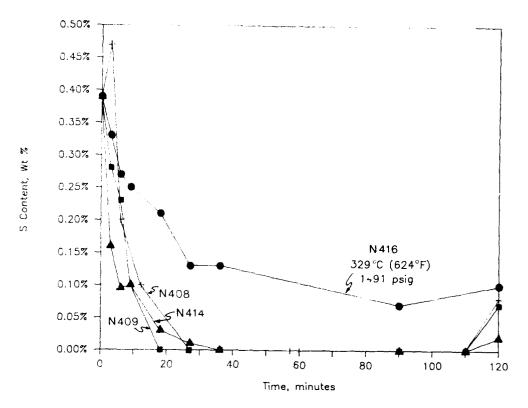


Figure 10. Sulfur content as a function of time during first-stage processing.

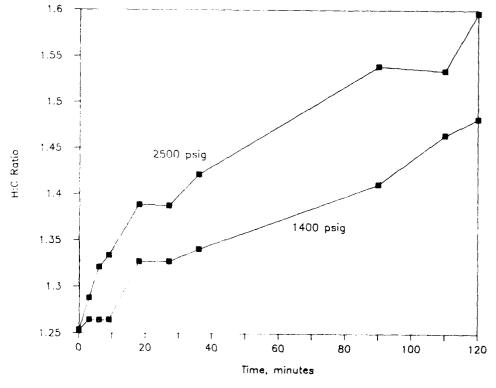


Figure 11. Hydrogen-to-carbon ratio as a function of time during first-stage processing.

MASS BALANCE

During hydrogenation, heteroatoms are usually removed in the gaseous phase in the form of H₂O, NH₃, and H₂S. Due to the volume of hydrogen contained in the gas phase, other species were present in such small quantities that they were virtually below the detectability limits of the gas chromatograph. It was possible to ascertain the presence of these species, but their fate could not be determined in a more precise manner. To illustrate this, the gas analysis for Run N-414 is given in Table 10. This analysis is typical of the gas analyses which were performed during this processing. As the table shows, the product gas contained 98.2 weight percent hydrogen and very small quantities of other components. The error of these normalized results is larger than any of the differences that are noted, and valid judgements concerning the gas analysis cannot be made. Because good mass balances were obtained for all streams with the exception of the gas stream, it was decided to look at the liquid stream balance for information which might corroborate the heteroatom removals detected during the analytical workups.

A liquid balance should reflect the removal of heteroatoms from the liquid phase to a limit of those present in the feedstock. In other words, if all heteroatoms were removed from the feedstock, the mass of the liquid product would equal the mass of the carbon and hydrogen which were originally present in the feedstock. This assumption appears to be a valid one based upon the data. Table 11 presents heteroatom removal and liquid recovery data from three runs and compares this information with the liquid recovery which would be expected for complete heteroatom removal. As the table shows, liquid recovery decreased as the degree of heteroatom removal increased. Therefore, the liquid balance data corroborate the analytical information with respect to heteroatom removal.

SINGLE-STAGE PROCESSING

Three runs, N-418, N-419, and N-420, were performed using two other catalysts: NT550 and Katalco 660. These were nickel-tungsten catalysts on an alumina support and an experimental silicon dioxide support, respectively. was suggested by the manufacturers of these catalysts that they might perform the equivalent functions of the two-stage processing in a single stage. An effort was made to compare the ability of these catalysts to remove heteroatoms and increase aliphatic content with that of the Shell 424 catalyst. It was not possible to directly compare results because Runs N-419 and N-420 were not made at conditions at which Shell 424 runs had been performed. Therefore, the Shell 424-based mathematical models were used to calculate the expected product compositions for runs made at those conditions using Shell 424 catalyst. Because Run N-418 was performed at the same conditions as Run N415, a Shell 424 run, the actual results of Run N-415 were compared with the predicted results. This comparison is shown in Table 12. As the table shows, the predicted results for the conditions of Run N-418 and the actual results of Run N-415 were similar. It was therefore assumed that the predictions at the N-419 and N-420 conditions would also be similar to results which would have been obtained using Shell 424 catalyst. With this in mind. relative differences were determined between Shell 424, NT550, and Katalco 660. As the table shows, NT550 behaved in a manner similar to that of Shell 424. Katalco 660 was different, as the product had a higher oxygen

TABLE 10

RESULTS OF GAS ANALYSIS OF RUN N-414

Component	Normalized Wt%
H ₂	98.20
co ₂	0.06
С ₃ Н ₈	0.19
C3H6	0.00
i-C4	0.02
COS	0.00
n-C4	0.15
H ₂ S	0.10
1-Butene	0.00
t-2-Butene	0.00
i-C5	0.04
C-2-Butene	0.00
n-C5	0.11
C ₂ H ₄	0.00
С ₂ н ₆	0.30
CH ₄	0.81
co	0.00
Total	100.00

content and a significantly lower aliphatic content than would be predicted for a Shell 424-catalyzed product at the same conditions. Runs N-419 and N-420 were run at nominally the same conditions (see Table 6). The results indicate that NT550 was more successful in lowering the total heteroatom content and in increasing the aliphatic content than Katalco 660.

TABLE 11
LIQUID RECOVERIES DURING HETEROATOM REMOVAL

Run	Heteroatom Removal (%)	Liquid Recovery (wt%)
N-416	12.42	96.55
N-421	33.06	93.32
N-409	67.88	92.90
theoretical	100.00	92.59

TABLE 12
RESULTS OF SINGLE-STAGE PROCESSING

	HC ^đ (wt%)	N ^b (wt%)	S ^C (wt%)	Aliphatic (wt%)	Aro:Ali ^d
N-418 - NT550					
Actual	3.72	0.43	0.00	45.60	1.19
Predicted	3.84	0.01	0.02	47.72	1.12
Run N-415	2.73	0.01	0.00	47.50	1.11
N-419 - NT550					
Actual	2.78	0.08	e	46.20	1.16
Predicted	1.39	0.08	0.02	52.35	0.91
N-420 - Katalco 660					
Actual	4.99	0.27	~-	43.60	1.29
Predicted	1.09	0.09	0.02	52.99	0.88

a Heteroatom content.

^b Nitrogen content.

^C Sulfur content.

 $^{^{\}rm d}$ Aromatic-to-aliphatic ratio.

e Undetected.

SECOND-STAGE PROCESSING

Three runs were performed as second-stage hydrogenation runs. The product of Run N-423 was used as the feedstock for Runs N-424 and N-425, while the products of Runs N-432 and N-433 were sampled, combined, and used as the feedstock for Run N-435. The product of Run N-423 contained some heteroatoms and a less-than-optimal alithatic content. It was used as a feed to determine if less-than-perfect feed could be used during the hydrogenation step to produce aviation fuel. The product of Run N-433 contained no measurable amounts of heteroatoms and was considered to be an "optimal" feedstock. Englehard S-661, a piztinum catalyst, was used as the catalyst for this processing, which was performed under the mild conditions listed in Table 13. The catalyst was chosen following conversations with various catalyst manufacturers.

TABLE 13
RESULTS OF SECOND-STAGE PROCESSING

	Feed For N-424, N-425	N-424	N-425	Feed For N-435 ^a	N-435
Date Temp. (^O C) Pressure (psig)		12/16/87 150 750	12/18/87 200 700		8/03/88 205 750
Elemental Analysis (wt%) C H N S Oc	83.74	87.25	86.78	88.13	88.56
	10.28	10.16	10.14	11.27	11.27
	0.23	0.29	0.29	90.03	6
	0.08	0.04			
	5.67	2.26	2.79	0.58	0.17
Total Heteroatom Content (wt%) Aliphatic Content (wt%) Aromatic:Aliphatic	5.98	2.59	3.08	0.61	0.17
	45.40	41.40	42.60	ND ^d	53.13
	1.20	1.42	1.35	ND	0.88

 $^{^{\}rm a}$ Values calculated as an average of the values of the products of Runs N-432 and N-433; the two feeds were combined in a 1:1 ratio.

b Undetected.

^C By difference.

d Not determined.

As Table 13 shows, the products of Run N-424 and N-425 did not exhibit an increase in aliphatic content. This may be due to one of three reasons: the catalyst itself was ineffective in this particular system, the conditions at which the processing was performed were not optimal for the catalyst, or the heteroatoms which were present in the N-423 product which was used as feedstock poisoned the catalyst. The results of Run N-435, which utilized the more "optimal" feedstock, were much more encouraging, as the resulting product was relatively enriched in aliphatic content compared to other samples obtained during the research. It should be noted that the specifications for jet fuel list a maximum aromatic content of 25 weight percent; i.e., 75 weight percent aliphatic content. Even the aliphatic content of Run N-435 did not approach this target, which could be due to poisoning of the catalyst by the undetectable quantities of heteroatoms that may have been present in the N-432 and N-433 products. These results indicate that, although the firststage products appear to be excellent candidates for high-density fuels due to their high aromaticity, the second-stage catalysts which were used were not effective in producing a product with a low aromatic content.

CONCLUSIONS

- The mathematical models derived from the statistical analysis of the data appear to be statistically valid. The results of Runs N-423, N-432, and N-433 successfully verified the mathematical models' usefulness in predicting "optimal" conditions at which to perform the processing.
- During the first-stage processing, it is possible to reduce the heteroatom content of the GPGP tar oil stream to below the detectability limits of the equipment.
- The product of the first-stage processing would be a good candidate for further processing to produce specification-grade JP-8 or high-density jet fuel due to its high aromaticity.
- Generally, the higher-pressure runs removed heteroatoms and increased hydrogen-to-carbon ratio at a more rapid rate than did the lower-pressure runs.
- The liquid balances which were calculated for the runs corroborated the analytical results.
- The single-stage processing which was attempted was unsuccessful. One of the catalysts which was tested behaved similarly to the Shell 424 catalyst which was used during the first-stage testing. The other catalyst was less effective at heteroatom removal. Neither catalyst successfully increased the aliphatic content.
- The results of the second-stage testing indicate that the catalysts which were used were not effective at saturating the ring structures. This could be due to poisoning of the catalyst due to minute quantities of heteroatoms present in the second-stage feedstock, poor operating conditions relative to the catalyst, or ineffectiveness of the catalyst in this particular system.

RECOMMENDATIONS

Further second-stage testing should be performed to investigate the effectiveness of different catalysts at saturating the ring structures in order to achieve specification-grade fuels.

REFERENCES

- 1. Knudson, C.L. 1988. Production of Jet Fuels From Coal-Derived Liquids, Volume II--Characterization of Liquid By-Products from the Great Plains Gasification Plant. AFWAL-TR-87-2042. Aero Propulsion Laboratory, Wright-Patterson Air Force Base, Ohio.
- 2. Rossi. 1988. Production of Jet Fuels From Coal-Derived Liquids, Volume V--GPGP Jet Fuels Production Program Feed Analyses Compilation and Review. AFWAL-TR-87-2042. Aero Propulsion Laboratory, Wright-Patterson Air Force Base, Ohio.
- 3. Kleesattel, D.R. 1985. Petrology of the Beulah-Zap Lignite Bed. Master's thesis, University of North Dakota, Grand Forks, ND.
- 4. Kleesattel, D.R. 1987. Petrology Study of the Beulah-Zap Lignite Bed with Respect to Gasifier Performance. Final Report to ANG Coal Gasification Co. University of North Dakota Energy and Mineral Research Center, Grand Forks.
- 5. Flash Pyrolysis Coal Liquefaction Process Development. 1977. ORC Annual Report, FE-7244-20.
- 6. Southern Co. Services. 1987. Integrated Two-Stage Liquefaction of Subbituminous Coal. EPRI Report No. AP-5221.
- 7. Speight, J.G. 1980. <u>Chemistry and Technology of Petroleum</u>. New York: Marcel Dekker.
- 8. Sinor, J.E. 1987. Production of Jet Fuels from Coal-Derived Liquids, Volume I--Market Assessment for Liquid By-Products from the GPGP. Aero Propulsion Laboratory, Wright-Patterson Air Force Base, Ohio.
- 9. Sullivan, R.F. and Frumpkin, H.A. 1986. Preprints, Div. of Fuel Chem., ACS 31(2): 325.
- 10. Fleming, B.A. et al. 1987. Production of Jet Fuel from Coal-Derived Liquids. Report No. 5, Quarterly Technical Progress Report, DOE Contract No. DE-AC22-87PC90015.
- 11. Smith, E.B. et al. 1987. Jet Fuels from Coal. Quarterly Technical Progress Report, DOE Contract No. DE-FC21-86MC11076.

LIST OF ABBREVIATIONS AND SYMBOLS

ALI CON	aliphatic content
ARO:ALI	aromatic-to-aliphatic ratio
ASTM	American Society for Testing Materials
bbl	barrel
Btu	British thermal unit
oC	degrees Celsius
g	gram
gal	gallon
ĞC	gas chromatograph
GPGP	Great Plains Gasification Plant
HC	heteroatom content
HDN	hydrodenitrogenation
hr	hour
JP-4	Grade 4 jet fuel
JP-8	Grade 8 jet fuel
JP-8X	high-density Grade 8 jet fuel
KF-water	
kg	kilogram
MŠ	mass spectroscopy
N	nitrogen content
NMR	nuclear magnetic resonance spectroscopy
NT550	Ni-W catalyst on an alumina support
Р	pressure
psig	pounds per square inch gauge
scf	standard cubic feet
SNG	synthetic natural gas
sp. gr.	
S T	sulfur content
	temperature
THFI	tetrahydrofuran insolubles
vo1%	volume percent
wt%	weight percent
x_1	temperature factor in modeling equations
×2 %	pressure factor in modeling equations
% -	percent

APPENDIX A STATISTICAL EXPERIMENTAL DESIGN

SAS 10:15 Wednesday, January 20, 1988

Model: MODEL1
Dep Variable: Y

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Prob>F
Model Error C Total	5 2 7	25.47698 1.72870 27.20569	5.09540 0.86435	5.895	Ø.1514
Root Dep 1 C.V.		0.92971 2.97125 31.29005	R-Square Adj R-Sq	0.9365 0.7776	

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	T for H0: Parameter=0	Prob > IT!
INTERCEP X1 X2 X3	1 1 1	3.459163 -1.933013 -0.814979 0.231305	0.45415438 1.06348806 0.77186311 1.22190418 1.11270893	5.272 -1.818 -1.056 0.189 0.148	0.0341 0.2108 0.4017 0.6673 0.8822
X4 VKI	1	0.186708 -0.252352	0.53236120	-0.474	0.6822

Backward Elimination Procedure for Dependent Variable Y

Step 0 F	all Variables En	tered K-squ	are = 0.93645796	C(p) = 6	. ଉଉଉଉଉଉଉଉ
	3 0	Sum of Squares	Mean Square	ŧ-	Prob>F
Regression	5	25.47698252	5.09539650	5.90	0.1514
Error	2	1.72870498			
Total	7	27.20568750			
	Commence to the same	Code stress and stress and	Transman I.T.		
11	Parameter	Standard	Type II	-	en b. s. en
Variable	Estimate	Error	Sum of Squares	F	Prob>F
INTERCER	3.45916335	0.65615638	24.02250524	27.79	0.0341
X 1	-1.93301320	1.06348806	2.85558428	3.30	0.2108
X2	-0.81497937	0.77186311	0.95351498	1.11	0.4017
XЗ	0.23130544	1.22190418	0.03097336	0.04	0.8673
X4	0.18670759	1.11270893		0.03	W.8822
X5	-0.25235197	0.53236120		0.22	0.6822
Bounds on c	andition number.	: 5.000a,	93.2912		
		ren and a second of the second	er di grins milje niger direg deeps sidde voor tillen deen brige door sink deen wedig enes door som		
Step 1 Va	riable X4 Remov	ad A-squ	are = 0.93556343	C(p) = 4.	02815534
	$\mathfrak{D}\epsilon_{\mathbb{S}}$	Sum of Squares	Mean Square	F	Prob>F
Regression	4	25.45264638	4.34316159	10.89	0.0393
Error	3	1.75304112	0.58434704		
Total	7	27,20569750			
	Parameter	Standard	Type II		
Variable	Hatimate	Error	Sum of Squares	ŧ	Prob>F
INTERCEP	3.50330944	0.49423953	29.35978591	50.24	0.0058
X 1	-1.80031061	0.58461727	5.54143764	9.48	Ø.0542
XP	-0.90471714	Ø. 45761531	2.28399634	3.91	0.1425
X3	0.38848519	0.45707331	0.21191204	დ. შა	0.1425 0.5895
X5	-0.29118837	0.39418657	0.31887117	0.55	0.5136
Bounds on co	andition number:	2.6001,	31.3515	erry same o the same with oran Aus, main their time time	
Step 2 Vai	riable X3 Removo	ed R-squa	are = 0.927 <i>7</i> 7418	C(p) = 2.	27332389
,		·		•	
	DF	Sum of Squares	Mean Square	۴	2rob>F
Regression	3	25.24073434	8,41357811	17.13	0.0095
Ennon	4	1.96495316	0.49123829		
Total	7	27.20559750			
	Farameter	Standard	Type II		
Variable	Estimate	Error	Sum of Squares	F	Prob>F
	-			•	

		รคร	10:15 Wednesda	y, January	20, 1988 3
INTERCEP	3.52395951	0.41078771	38.33751605	78.04	0.0009
X 1	-2.01394684	0.42605048	10.97655600	22.34	0.0091
X2	-0.71525683	0.30468830	2.70710238	5.51	0.0797
X5	-0.22826650	Ø.34849215	0.21075115	0.43	Ø.5482
Bounds on co		: 1.3711,	11.2168		- and the same has been same sha
Step 3 - Var	riable XS Remov	ed R-squar	re = 0. 92002723	C(p) = 0.	51716092
	DF	Sum of Squares	Mean Square	Ł.	Prob>F
Regression	2	25.02997319	12.51498659	28.76	0.0018
Error	Ŀj	2.17571431	0.43514286		
lotal	7	27.20568750			
	Parameter	Standard	lype II		
Variable	Estimate	Error	Sum of Squares	Æ.	Prob>F
INTERCEE	3.43002277	0.26030670	75.55360503	173.63	0.0001
λt	-1.83847496	Ø.3994357Ø	11.33310408	26.04	0.0038
XII	- 0.67431379	0.28066521	2.51176364	5.77	0.0614
Bounds on do	ndition number:	1.3134,	5.2536		

All variables in the model are significant at the 0.1000 level.

SAS 10:15 Wednesday, January 20, 1988

Summary of Backward Elimination Procedure for Dependent Variable Y

Step	Variable Removed	Number In	Partial R**2	Model R**2	C(p)	۳	Prob>F
1	Х4	4	0.0009	0.9356	4.0282	0.0282	0.8822
2	ХЗ	3	0.0078	0.9278	2.2733	0.3626	Ø.5895
3	X5	2	W.0077	0.9200	0.5172	0.4290	0.5482

Model: MODEL1

Model Crossproducts X'X X'Y Y'Y

XYX	1.1	TERCER		X 1		X2	ХЗ
INTERCER		8	2.033	3333333		-0.704	2.3113333333
X 1.	2.0333	333333	4.098	388889	2.3113	333333	1779244444
ΧØ		-0.704	2.3113	3333333		7.3172	1.7980301333
XIII	2.3110	333333	1779	7244444	1.7980	301333	3.5035361867
X4	4.09日モ	838889	1.759	3703704	1779	244444	2.0210694815
វ 5		7.3172	1.7980	8301333	-1.677	553008	2.3279697381
Y		23.77	-2.939	9555557	-12	.06042	7.4741206667
1 X X	5	4.09886 1.75937 17792 2.02106 3.97594 3.50353	Ø37Ø4 44444 94815 -69136 -61867	1.79803 -1.6778 2.32798 3.50353 10.9163 21.640	663008 697381 361867 344435	-2.9398 -12. 7.47412 11.2485 21.640	06042 206657 344444

$\lambda^{*}X$ Inverse, Parameter Estimates, and SSE

INVERSE	INTERCER	X 1	X2	Y
INTERCER	.15571799941	1042672539	.04791748909	3.4300227731
· · · 1	1042672539	.36665860844	1258506547	-2.038474962
7	. 04791746999	1258506547	.18102781467	6743137864
Y	3.4300227731	-2.038474962	6743137864	2,1757143165

Dep Variable: Y

Analysis of Variance

So	urce l	Sum o DF Square		F Value	Prob>F
Er	del ror Total	2 25.0299 5 2.1757 7 27.2054	1 0.43514	28.761	0. 0 013
	Root MS Dep Mea C.V.		5 Adj R-Sq	0.9200 0.8880	,
		far	ameter Estimates		
Variable	DF	Parameter Estimate	Standard Error	T for HØ: Parameter=Ø	Prob > (T)
INTERCEP X1 X2	1 1 1	3.430023 -2.038475 -0.674314	0.26030670 0.39943570 0.28066521	13.177 -5.103 -2.403	0.0001 0.0038 0.0514
Variable	DF	Type I SS	Type II SS	Standardized Estimate	Tolerance
INTERCEP X1 X2	1 1 1	70.626612 22.518210 2.511764	75.553605 11.333104 2.511764	0.00000000 -0.73967914 -0.34822369	0.76138169 0.76138169
Variable	DF	Varianco Inflation			
INTERCEP X1 X2	1 1 1	0.00000000 1.31340169 1.31340169			

Covariance of Estimates

COAB	INTERCEP	X 1.	X.Z
INTERCEP	.05775957594	0453711513	.02085095335
X1	0453711513	.15954887629	0547630141
X2	.02085095335	0547630141	.07877296/39

SAS 10:15 Wednesday, January 20, 1988

4.2572

1.7124

5.3871

Correlation of Estimates

	CORRE	IN	INTERCEP X1		X2		
	1NTERCEF 1.0000 X1 -0.4364 X2 0.2654		-0.4364 1.0000 -0.4885		0.2854 -0.4885 1.0000		
Obs	Υ	Fredict Value	Std Err Predict	Lower95% Mean	Upper95% Mean	Lower95% Predict	Upper95% Predict
1	1.1500	1.5684	0.437	0.4449	2.6919	-0.4557	3,6025
2	2.3800	2.4933	0.509	1.1837	3.8028	0.3508	4.6358
3	1.1400	Ø.8028	0.385	-0.1878	1.7934	-1.1610	2.7656
4	4.3100	4.5779	0.399	3.5526	5.6033	2.5963	6.5595
55	1.0600	0.9211	0.370	-0.0312	1.8733	-1.0237	2.8558
6	2.7300	3.6339	0.280	2.9140	4.3538	1.7917	5.4760
7	6.4900	6.2229	0.506	4.9227	7.5231	4.0851	8.3597
425	4	1.01 170 1.11 77					

ប៉ី២៩	Residual	Std Err Residual	Student Residual		-2-1-0 1 2		Cook*s D
1	-0.4084	W. 494	-0.827	i	*1	;	Ø.178
2	-0.1133	0.419	-0.270	1	1	;	0.036
3	0.3372	0.535	0.630	;	}	;	W. W69
4	-0.2679	0.525	-0.510	ł	* ;	;	0.050
ij	0.1389	0.54 6	0.255	1	1	1	0.010
ద	-0.9039	0.597	-1.513	1	***!	1	0.148
7	J.2671	0.423	0.631	1	: *	1	0.189
8	0. 9503	0.500	1.585	ł	!** *	1	0.176

0.275 2.8423

Sum of Residuals -3.9968E-15 Sum of Squared Residuals 2.1757 Predicted Resid S5 (Press) 4.0500

4.5000 3.5497

```
NOTE: Copyright(c) 1985 SAS Institute Inc., Cary, NC 27511, U.S.A.
NOTE: SAS (r) Proprietary Software Release 6.02
      Licensed to UNIVERSITY OF NORTH DAKOTA, Site 11524001.
NOIE: AUTOEXEU processing completed.
    1
         option ps=56;
    2
         data set jetfuel:
    3
            infile "b:jet.dat";
    4
            input temp press n s aliph aro_ali;
    5
            \times 1 = (temp-360)/30;
    6
            \times 2 = (press-2000)/500;
    7
            x3 = x1*x2;
    8
            \times 4 = \times 1 \times 1:
    9
            x5 = x2*x2;
   10
            run;
NOTE: The infile "B:JET.DAT" is file B:\JET.DAT.
NOTE: 8 records were read from the infile B:\JET.DAT
      The maximum record length was 32.
      The minimum record length was 32.
NOTE: The data set WORK.SET has 8 observations and 11 variables.
NOTE: The data set WORK.JETFUEL has 8 observations and 11 variables.
NOTE: The DATA statement used 34.00 seconds.
         prod reg:
   1 1
   12
            model n s aliph aro_ali = x1-x5 / r;
   13
            run;
   14
         proc req;
NOTE: The PROCEDURE REG used 2.17 minutes.
            model n s aliph aro_ali = x1-x5 / method=b r;
   15
   16
            run:
         quit;
   17
NOTE: The PROCEDURE REG used 2.85 minutes.
   18
         proc req:
   19
            model s = \times 2 \times 5 / r;
   20
            run;
   21
         quit:
NOTE: The PROCEDURE REG used 1.00 minutes.
```

Model: MODEL1 Dep Variable: N

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Prob>F
Model Error C Total	5 2 7	Ø. ØØØØ1 Ø. ØØØØØ Ø. ØØØØ1	ଡ. ଉଉପଉପ ଡ. ଉଉପଉପ	1194.820	ଉ. ଅଉଜଞ
Root Dep 1 C.V.		Ø.ØØØØ4 Ø.ØØØ86 4.39794	R-Square Adj R-Sq	Ø.9997 Ø.9988	

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	T for H0: Farameter=0	Prob > T
INTERCEP X1 X2 X3 X4 X5	1 1 1 1 1	0.000104 0.000040989 -0.000441 -0.000722 0.000455 0.000602	0.00002678 0.00004416 0.00003268 0.00005220 0.00004682 0.00002168	3.889 0.928 -20.217 -13.838 13.982 27.780	0.0602 0.4513 0.0024 0.0052 0.0051 0.0013

Dep Variable: S

Analysis of Variance

Source	DF.	Sum of Squares	Mean Square	F Value	Prob>F
Model Error C Total	5 2 7	Ø. ØØØØØ Ø. ØØØØØ Ø. ØØØØØ	Ø. ØØØØØ Ø. ØØØØØ	2.366	Ø.3233
Root Dep 1 C.V.		0.000 32 0.000 56 57.33974	R-Square Adj R-Sq	Ø.8554 Ø.4939	

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	T for H0: Parameter=0	Prob > T
INTERCEP	1	0.000014705	0.00022768	0.065	0.9544
X 1	1	-0.000011615	0.00037552	-0.031	0.9781
X2	1	-0.000189	0. 00027789	-0.680	0.5665
ХЗ	1	0.000123	0.00044389	Ø.277	0.8077
X 4	1	0.000214	0. 00039809	Ø.537	0.6449
X5	1	0.000428	0.00018432	2.323	0.1459

Dep Variable: ALIPH

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Prob>F
Model Error C Total	5 2 7	144.72367 8.24508 152.96875	28.94473 4.12254	7 .0 21	0.1294
Root Dep N C.V.		2.03040 49.31250 4.11742	R-Square Adj R-Sq	0.9461 0.8113	

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	T for H0: Farameter=0	Prob > T
INTERCEP	1	49.240984	1.43327831	3 4. 3 5 5	0.0008
X 1	1	2.199264	2.36392880	0.930	0.4504
X2	1	3.693924	1.74935358	2.112	0.1691
XЗ	1	-2.655819	2.79432798	-0.950	0.4422
x4	1	1.320364	2.50604090	0. 527	0.6509
X 5	1	-0.157338	1.16033701	-0.136	0.9046

Dep Variable: ARO_ALI

Analysis of Variance

		Sum of	Mean		
Source	DF	Squares	Square	F Value	Prob>F
Model	5	0.27914	Ø.05583	8.489	0.1064
Error	2	0.01285	0.00643		
C Total	7	0.29199			
Root	MSE	0.08016	R-Square	Ø.956Ø	
Dep M	1ean	1.04375	Adj R-Sq	0.8460	
c.v.		7.67979	·		

Parameter Estimates

		Parameter	Stand	lard	T for HØ:	
Variable	DF.	Estimate	Er	ror F	arameter=0	Prob > IT!
INTERCEP	1	1.031494	0.05658		18.229	0.0030
X 1	1	-0.104882	0.0 9332		-1.124	0. 377 9
X2	1	- 0. 15537Ø	0.06906		-2.2 50	Ø.1534
X3	1	0. 121732	0.11031	655	1.103	0. 3848
X4	1	-0.041598	0.0 9893		-0.420	0.7150
x5	1	0.016151	0.04580	1864	0.353	0. 7581
		Predict	Std Err		Std Err	Student
Obs	N	Value	Predict	Residua		Residual
<u>-</u>		V 301 31 141 500	y j take took also than too		the state and an and first and an	
1	Ø	1.623E-5	0.000	-1.62E-	5 0.000	-1.378
2	0.00280	0.00279	0.000	1.13E-	-5 0.00 0	1.386
3	4E-4	4.291E-4	0.000	-2.91E-	5 0.000	-1.383
4	0.00220	0.00221	0.000	-9.44E-	-6 0.000	-1.391
5	Ø	-3.75E-5	0.000	3.745E-	5 0.00 0	1.376
6	1E-4	1.066E-4	0.000	-6.59E-	-6 0.000	-Ø.246
7	0.00130	0.00130	0.000	2.523E-	6 0.000	1.411
8	1E-4	8.996E-5	0.000	1.004E-	-5 0.000	0.374
A*** 1	ans a man a		Cook's			
Obs	-2-1-0 1	2	D			
1	! ** !	!	2.966			
$\bar{2}$	1 1**	į	6.605			
3	1 **1	i	0.721			
4	**1		9.757			
5	1 1**		0.298			
6	1		0.010			
7	1 1**	1 14	18.777			
8	1	1	0.023			
Sum of Re			31 89 3E~18			
	quared Resid		0.0000			
Predicted	l Resid SS ((Press)	0.0000			
		Predict	Std Err		Std Err	Student
Übs	S	Value	Predict	Residua		Residual
- Page - 11/2 10/00		· Said at York Sair	E T THE SHIP IN SEE SEE	e a man say any any and and and		r room near ord the first that the

0.000 1.416E-4 0.000 -9.8E-5 0.000

0.000

1.414

-1.414

8E-4 6.584E-4 7E-4 7.98E-4

1

2

SAS	12:36	Thursday,	March	3.	1988
	A A			_	* '

0bs	S	Predict Value	Std Err Predict	Residual	Std Err Residual	Stu de nt Residual
3	6E-4	3.474E-4	0.000	2.526E-4	Ø. ØØØ	1.414
4	0.00120	0.00112	0.000	8.149E-5	0.000	1.412
5	2E-4	5.272E-4	0.000	-3.27E-4	0.000	-1.414
6	Ø	1.8E-5	0.000	-1.8E-5	0.000	-0.079
7	0.00100	0.00102	0.000	-2.05E-5	0.000	-1.350
8	Ø	1.194E-5	0.000	-1.19E-5	0.000	~ 0.0 52

0bs		2-1-0 1 2		Cook's D
1	:	:**	{	3.124
2	!	**!	1 7	6.87 3
3	1	! * *	ł	Ø.753
4	;	; * *	;	10.059
5	1	**;	ł	0.314
6	1	1	;	0.001
7	;	**:	:	136.298
8	1	}	1	0.000

Sum of Residuals -4.69256E-19
Sum of Squared Residuals 0.0000
Predicted Resid SS (Press) 0.0001

0bs	ALIPH	Predict Value	Std Err Predict	Residual	Std Err Residual	Student Residual
1	54.2000	53.5817	1.930	0.6183	0.630	0. 981
2	49.70 0 0	50.1165	1.983	-0.4165	0.436	-0.954
3	54.8000	53.716 1	1.691	1.0839	1.125	0.964
4	44.1000	43.7611	1.998	0.3389	Ø.363	0.933
5	52.0000	53.4362	1.415	-1.4362	1.457	-0.986
6	47.5000	49.0343	1.436	-1.5343	1.436	-1.069
7	41.6000	41.6611	2.028	0.0611	0.0 96	-0.638
8	50.6000	49.1930	1.433	1.4070	1.438	0.978

SAS	12:36	Thursday,	March	3.	1988	5
CALLED	A AL H 1.51	TITCH WEIGHT 9	1 162(1 62.11	-	1 , 	

Cook's D		1 2	-1-0 1		Obs	
0.190	;		**!	!	6	
30.403	}		* ;	1	7	
Ø.15E	1		: *	1	8	

Sum of Residuals Ø
Sum of Squared Residuals 8.2451
Predicted Resid SS (Press) 1025.7332

0bs	ARO_ALI	Predict Value	Std Err Predict	Residual	Std Err Residual	Student Residual
i	Ø.85 0 0	0.8699	0.076	-0.0199	0.025	-Ø.798
2	1.0100	0.9968	0.078	0.0132	0.017	0.768
3	0.8200	Ø.8546	0.067	-0.0346	0.044	-0.779
4	1.2700	1.2807	0.079	-0.0107	0.014	-0.744
5	0.9200	0.8737	0.0 56	Ø.0463	Ø.058	0.804
6	1.1100	1.0416	0.057	0.0684	0.05/	1.207
7	1.4000	1.3984	0.080	0.00159	0.004	0.420
8	0.9700	1.0344	0.057	-0.0644	0.057	-1.134

Cook's				
Q.	<u>.</u>	-0 1 2	-2	Obs
0.995	:	* :	;	1
2.029	1	: *	1	2
0.229	;	* 1	1	₹,
2.791	1	* ;	j	4
0.102	1	! *	!	E.J
0.243	;	: * *	}	6
13.168	;	1	}	7
0.213	†	(* }	;	8

Sum of Residuals 4.440892E-16
Sum of Squared Residuals 0.0129
Predicted Resid SS (Press) 0.8004

SAS 12:36 Thursday, March 3, 1988

Backward Elimination Procedure for Dependent Variable N

Step Ø	All Variables Entere	ed R-squar	re = 0. 99966533	C(p) = 6.0	00000000
	DF Sur	n of Squares	Mean Square	F	Prob>F
Regression	n 5	Ø. ØØØØØØ86Ø	0.00000172	1194.82	0.0008
Error	2	0.00000000	Ø. ØØØØØØØØ		
Total	7	Ø.ØØØØØ86Ø			
	Parameter	Standard	Type II		7
Variable	Estimate	Error	Sum of Squares	F	Prob>F
INTERCEP	0.00010414	0.00002678	0.00000002	15.13	0.0602
X 1	Ø.ØØØØ4Ø99	0.00004416	0. 00000000	0.86	0.4513
X2	-0.00066071	0.00003268	0.00000059	408.71	0.0024
XЗ	-0.00072242	0.00005220	0.00000028	191.50	0.0052
X4	0.00065459	0.00004682	0.00000028	195.48	0.0051
X5	0.00060219	0.00002168	0.00000111	771.71	0.0013
Bounds on	condition number:	5.4825,	99.5	شجه مجمد محمد المحمد	
Step 1	Variable X1 Removed	R-squar	re = 0. 99952119	C(p) = 4.8	3 614370 9
	DF Sur	n of Squares	Mean Square	F	Prob>F
Regressio		0.00000859	0.00000215	1565.62	0.0001
Error	3	0.00000000	Ø. ØØØØØØØØ		
Total	7	0.00000860			
	Parameter	Standard	Type II		
Variable	Estimate	Error	Sum of Squares	F	Prob>F
INTERCEP	0.00010304	0.00002613	0.000000002	15.55	0.0291
X2	-0.00063467	0.00001636	0.00000207	1504.86	0.0001
ХЗ	-0.00076312	0.00002766	0.00000104	761.31	0.0001
X 4	0.00068736	0.00003002	0.00000072	524.12	0.0002
X5	0.00061162	0.00001870	0.00000147	1069.36	0.0001

All variables in the model are significant at the 0.1000 level.

SAS 12:36 (hursday, March 3, 1988 7

Summary of Backward Elimination Procedure for Dependent Variable N

Step	Variable Removed	Number In	Partial R**2	Model R**2	C(p)	F	Prob>F
1	X 1	4	0.0001	Ø.9995	4.8614	0.8614	0. 4513

Backward Elimination Procedure for Dependent Variable S

Step Ø	All Variables Ent	ered R-squ	are = 0.8 55389 0 4	C(p) = 6.00	ଅପ୍ରପତ୍ରପତ୍ର
	DF	Sum of Squares	Mean Square	F	Prob∋F
Regression	5	0.00000123	0.00000025	2.37	0. 3233
Error	2	0.00000021	0.00000010		
Total	7	0.00000144			
	Parameter	Standard	Type II		
Variable	Estimate	Error	Sum of Squares	F	Prob≥F
INTERCEP	0.00001470	0.00022768	Ø. ØØØØØØØØ	0.00	0.9544
X 1	-0.00001162	0.000 37552	Ø. ØØØØØØØØ	0.00	0.9761
X2	-0. 0001 8906	0.00027789	Ø.ØØØØØØØ5	0.46	0.5665
X.3	Ø.ØØØ12298	0.00044 389	Ø.ØØØØØØØØ	0.08	0.8077
X 4	0.000 21383	0.00039809	മ.ഗമാഗവാധാ	Ø.29	0.6449
X5	0.00042812	0.00018432	0.00000056	5.39	0. 1459
Bounds on	condition number:	5.4825,	99.5		
Step 1 V	/ariable X1 Remove	·	are = 0.85531986	·	20 9 567 8
	DF"	Sum of Squares	Mean Square	F	Prob⊃f
Regression	4	0.00000123	0.00000031	4.43	0.1256
Error	3	0.00000021	0.0000000 7		
Total	7	0.00000144			
			-		
	Parameter	Standard	, ·		
Variable	Estimate	Error	Sum of Squares	F	Prob>F
INTERCEP	0.00001502	0.00018576	Ø.00000000	Ø. Ø1	0.9407
X2	-0.00019644	0.00011633		2.85	0.1899
X 3	0.00013452	0.00019666		0.47	0.5431
X 4	0.00020455	0.00021348		0. 92	0.4087
X5	0.00042545	0.00013299		10.23	0.0494
Bounds on	condition number:	1.6134,	21.3751		
	t	r retti brekt gege geme glede Willy gege gelig bligt Bligg gem glenn keine brage i	هيئة فهيئة ومند عوم علية منها عليه عليه عليه عليه عليه عليه عليه عليه	t Affice many apply State Paper spice may make man apply and a man make p	
Step 2 V	Variable X3 Remove	ed R-squ	are = 0.83275584	C(p) = 2.3	13 021 93
	DF:	Sum of Squares	Mean Square	F	Prob>F
Regression	3	0.00000120	0.00000040	6.64	0.0494
Error	4	0. 00000120 0. 000000024		O = O *f	W. W474
Total	1	0.000000144			
, ara as a	,	er er en en en er er er er			
	Parameter	Standard	Type II		
Variable	Estimate	Error	• •	F	Prob>F
		· · · · · · · · · · · · · · · · · · ·		·	

		SAS	12:36 Thursday	, March 3,	1988 9
INTERCEP	Ø. ØØØØØ84Ø	0.00017273	0.00000000	0.00	0.9636
	-0.00015534	0.00009275	0.00000017	2.80	
X4	0.00026735	0.00017946	0.00000013	2.22	
X5	0.00044147	0.00012189	0.00000079		
Bounds on con	dition number:	1.0432,	9.2712		
Step 3 Vari	able X4 Removed	R-squar	re = 0. 73996 0 72	C(p) = 1.	59639804
	DF Sum	of Squares	Mean Square	۴	Prob>F
Regression	2	0.00000106	0.00000053	7.11	0.0345
Error	5	0.00000037	0.00000007		
Total	7	0.00000144			See 19 20
	Parameter	Standard	Type II		<u> </u>
Variable	Estimate	Error	Sum of Squares	F	Prob>F
INTERCEP	Ø. ØØØ15917	0.00015611	Ø. ØØØØØØØ8	1.04	Ø.3547
	-0.00015025	0.00010337	0.00000016	2.11	
X5	0.00042651	0.00013548	0.00000074	9.91	0.0254
Bounds on con	dition number:	1.0361,	4.1445		لہ
Step 4 Vari	able X2 Removed	R-squar	re = 0.63009214	C(p) = 1.	11590356
	DF Sum	of Squares	Mean Square	F	Prob>F
Regression	1	Ø. ØØØØØØ91	0.00000091	10.22	0.0187
Error	6	0.00000053	0.00000009		
Total	7	0.00000144	_ ,		
	Farameter	Standard	Type II		
Variable	Estimate		Sum of Squares	F	Prob>F
INTERCEP	0.00013875	0.00016928	Ø. ØØØØØØØ6	0.67	0.4437
X5	0.00046329		0.00000091		
Bounds on con	dition number:	1.0000,	1.0000		

All variables in the model are significant at the 0.1000 level.

SAS 12:36 Thursday, March 3, 1988 10

Summary of Backward Elimination Procedure for Dependent Variable S

9t ep	Variable Removed	Number In	Partial R**2	Model R**2	C(p)	F	Prob∋F
1	X 1	4	0.0001	Ø.8553	4.0010	0.0010	0.9781
2	XΒ	3	0.0226	0.8 328	2.3130	0.4679	0.5431
3	X 4	2	0.0928	0.7400	1.5964	2.2194	0.2105
4	X2	1	0.1099	0.6301	1.1159	2.1125	0.2058

SAS 12:36 Thursday, March 3, 1988 11

Backward Elimination Procedure for Dependent Variable ALIPH

Step Ø	All Variables En	tered R-squa	are = 0. 946 0 9958	C(p) = 6.	ดดดดดดดด
	DF	Sum of Squares	Mean Square	F	Prob∋F
Kegression	n 5	144.72367080	28.94473416	7.02	Ø.1294
Enror	2	8.24507920	4.12253960	/ • • • · · · · · · · · · · · · · · · ·	42 4 A 42 7 1
lotai	7	152.96875000	7:12233700		
TUCKI	,	102.700/0000			
	Parameter	Standard	Type 11		
Variable	Estimate	Error	Sum of Squares	F	Prob⊃f
INTERCER	49.24098449	1.43327831	48 65. 8333 <i>7</i> 841	1180.30	0.0008
X1	2.19926369	2.36392880	3.54821208	Ø.87	0.4504
- A.D. - X.D.					
	3.69392410	1.74935358	18.38169577	4.46	Ø. 1691
X 3	-2.65581867	2.79432798	3,72397637	0.90	0.4422
× 4	1.32036425	2.50604090	1.14439523	0. 28	0. 6509
×5	-0.15733764	1.16033701	0.07579871	0.02	0.9046
Bounds on	condition number	: 5.4825,	99.5		
Step 1	Variable X5 Remov	ed R-squa	are = 0. 9456 0 4 0 7	C(p) = 4.	Ø183 8 641
	DF	Sum of Squares	Mean Square	F	Frob>F
Regression	n 4	144.64787209	36.16196802	13.04	0.0307
Error	3	8.32087791	2.77362597		
fotal	7	152.96875 000			
	Parameter	City and an animal and an animal	F		
		Standard	Type II	r	en. 1 5 1=1
Variable	Estimate	Error	Sum of Squares	F	Prob>F
INTERCER	49.12061816	0.92302116	7855.10929872	2832.07	0.0001
Zij	2.04907720	1.71298571	3 .9 6878 0 31	1.43	0.3175
x2	3.81568713	1.23141899	26.63064672	9.60	0.0534
X 3	-2.83693001	2.01323182	5.50753882	1.79	0.2536
	1.46980135	1.84612174	1.75810378	v. 63	0.4841
^ **	1.40700100	1.040121/4	7.\001 6 0\0	v. 0.3	0.4041
Bounds on	condition number	4.2299,	56.9513	t name grape direct gares cours bladen dann deren obert filles einge.	
Stars to t	Variable X4 Remov	eard Danie; ear	are = 0.93411084	C(n) = 2	ልልል ፡፡፡፡፡፡፡፡፡፡፡፡፡፡፡፡፡፡፡፡፡፡፡፡፡፡፡፡፡፡፡፡፡፡
SPE CERT IN	VONESCE TO THE STREET	era is as que	mi ca — Kir Villet I Kilida	W (10 / 10 / 12 ·	1 TTWT//W
		Comment Consumer	Mean Square	F	Prob⊃F
	DF	Sum of Squares	The title to the test of the	·	
Regressio		142.88976831	47.62992277	18.90	ପ୍ର, ସ୍ଥମ୍ପର୍
Regression Frror		·			
•	n 3	142.88976831	47.62992277		
Frror	n 3 4 7	142.88976831 1 0.0 7898169 152.96875000	47. 62992277 2.51974542		
Frrom	n 3 4	142.88976831 1 0.0 7898169	47.62992277		

		SAS	12:36 Thursday,	March 3,	1988 12
INTERCEP	49.24810930	0.86642291	8140.96580094	323 0. 87	0.0001
	2.99129195	1.18040876			
	3.19617882		31.10511656		
	-1.66542249		4.07485437		
· 3	"1.00U42247	1.50702420	4.0/40040/	A = COAL	W = 2.72.4
Bounds on cond:	ition number:	2.3828,			
Step 3 Varial	ole X3 Remove	d R-squar	e = 0. 9 0 747237	C(p) = 1	. 43328080
	DF	Sum of Squares	Mean Square	F	Prob∋F
Regression	2	138.81491394	69.40745697	24.52	0.0026
Error	5 7	14.15383606	2.83076721		
Total	7	152.96875000			
	Parameter	Standard	Type II		
Variable	Estimate	Error	Sum of Squares	F	Prob>F
INTERCEP	48.49231385	0. 66822345	14907.55924729	5266.26	0.0001
X 1	3.87056715	1.01403639	41.24262371	14.57	0.0124
X2	2.40869424	0.70631551			
Bounds on cond:	ition number:	1.2786,	5.1145		

All variables in the model are significant at the 0.1000 level.

SAS 12:36 Thursday, March 3, 1988 13

Summary of Backward Elimination Procedure for Dependent Variable ALIPH

Step	Variable Removed	Number In	Partial R**2	Model R**2	C(p)	F	Prob>F
-1	X5	а	0.0005	0.9456	4.0184	Ø.0184	0.9046
• • •	Xd	ż	0.0115	0.9341	2.4448	0.6339	0.4841
77	Y 70	ō	M. M266	0.9075	1.4333	1.6172	0.2724

SAS 12:36 Thursday, March 3, 1988 14

Backward Elimination Procedure for Dependent Variable ARO ALI

Step Ø	All Variables Ent	tered R-squa	are = 0. 95598942	C(p) = 6.	ଉଉଉଉଉଉଉ ଉ
	DF	Sum of Squares	Mean Square	F	Prob>F
Regression	5	0. 27913696	Ø. Ø 5582739	8.69	0.1064
Error	2	0.01285054	Ø. ØØ642527		- - ·
Total	7	0.29198750			
	Parameter	Standard	Type II		
Variable	Estimate	Error	Sum of Squares	12	Frob∋F
INTERCEP	1.03149430	0. 05658402	2.13519449	332.31	0.0030
X 1	-0.10488231	0.09 332493	Ø.ØØ811522	1.26	20. 37 79
X2	-0.15536987	0.06906228	0.03251945	5.06	0.1534
Xβ	0.12173164	0.11031655	0.00782379	1.22	0.3848
X 4	-0.04159778	0.098 93534	0.00113587	0.18	0.7150
X5	0.0 16 1 5138	0.04580864	0.00079876	0.12	0.75 81
Bounds on	condition number:	5.4825,	99.5		
Step 1 V	ariable X5 Remove	ed R-squa	are = 0. 95325382	C(p) = 4.	1243152 8
	DF	Sum of Squares	Mean Square	F	Frob>F
Regression	4	0.27833820	0.06958455	15.2 9	0.0246
Error	3	0.01364930	0.00454977		
Total	7	0.29198750			
	Parameter	Standard	lype II	£	
Variable	Estimate	Error	Sum of Squares	F :	Frob≥F
INTERCEP	1.04385041	0.03738370	3.54732615	779.67	0.0001
X 1	-0.08946502	0.06937841	0.00756566	1.66	Ø.2876
X2	-0.16786937	0.04987426	0.05154412	11.33	0.0435
X.3	0.14032349	0.08153882	0.01347476	2.96	Ø. 1837
x 4	-0.05693813	0.07477061	0.00263836	Ø.58	0.5017
				2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	
Bounds on	condition number:	4.2299,	56.9513	a make alam taken minin alam dang pertambah salah salah salah	
Step 2 V	ariable X4 Remove	ed R-squa	are = 0. 94421796	C(p) = 2.	53 49 3 7 32
	DF	Sum of Squares	Mean Square	F	Prob⊃F
Regression	3	0. 27569984	Ø.Ø9189995	22.57	0.00 57
Error	4	0.01628766	0.00407191	Survey & Sur &	NO WINDS F
Total	7	Ø.2919875Ø	war en Mart Mart I Mart I de It de		
	Parameter	Standard	l∨pe II		
Variable	Estimate	Error	Sum of Squares	F.	Prob∋F

		SAS	12:36 Thursday,	March 3.	1988 15
INTERCHE	1.03891158	Ø.Ø3482979	3.6228 802 5	889.72	0.0001
X1	-0.12596516	0.04745188	0.02869411		0.0567
X2	-0.14387045	0.03656912	0.06302500		
X3	0.09494086	0.05264628	0.01324249		
~~		War de War Land dan Yang of Dan James Car	and in the discussion of the property	140 B 2 Car	W 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Bounds on cor	ndition number:	2.3828,			
1375 tale 1554 1998 may 1998 1998 1998 (1998 1998 1999 1999 199	agen filmer major errom timer tyran samme utom mit ar major i men debug about oblant from balan arabb at	to the same of the same state of the same and same sail same and	TO THE PARTY AND THE THE PARTY AND THE PARTY		***************************************
Step 3 Vari	iable X3 Removed	R-squar	e = 0.898865 0 4	C(p) = 2	. 59593814
	DF Sur	m of Squares	Mean Square	F	Prob∋F
Regression	2	0. 262 45 736	0. 13122868	22.22	0.0033
Error	5	0.02953014	0.00590603		
Total	7	0.29198750			
, was	•				
	Parameter	Standard	Type lI		
Variable	Estimate	Error	· ·	t .	Prob>F
INTERCEP	1.08199726	0.03052231	7.42186507	1256.66	0.0001
X 1	-0.176 0 9006	0.04631794	Ø.Ø8536243	14.45	0.0126
X2	-0.09897826	0.03226224	Ø.05558867	9.41	0.0278
Bounds on cor	ndition number:	1.2786,	5.1145	المراجعة المستقد المام المناس	

Hell variables in the model are significant at the 0.1000 level.

SAS 12:36 Thursday, March 3, 1988 16

Summary of Backward Elimination Procedure for Dependent Variable ARO_ALI

Step	Variable Removed	Number In	Partial R**2	Model R**2	C(p)	ŀ	Prob AF
1	X5	4	0.0027	0.9533	4.1243	0.1243	0. 7581
2	X 4	3	0.0090	0.9442	2.5349	0.5799	0.5017
3	XII	2	0.0454	Ø.8989	2.5959	3.2522	0.1457

			SAS	12:36 Thu	rsday, March	3, 1988 17
		Fredict	Std Err		Std Err	C to continuo to
Obs	N	Value	Predict	Residual	Residual	Student Residual
		V 664 34 141 466	11 6 6 6 6	116 21 00 001	Westdagi	Kestudai
1	Ø	2.984E-5	0.000	-2.98E-5	0.000	-1.625
2	0.00280	0.00280	0.000	2.867E-6	0.000	0.240
3	4E-4	4.162E-4	0.000	-1.62E-5	0.000	-0.661
4	0.00220	0.00219	0.000	9.65E-6	0.000	0.456
5	Ø	-5.01E-5	0.000	5.006E-5	0.000	1.685
6	1E-4	1.099E-4	0.000	-9.91E-6	0.000	-Ø.375
7	0.00130	0.00131	Ø. ØØØ	-1.42E-5	0.000	-0.803
8	1E-4	9.243E-5	0.000	7.567E-6	0.000	0. 287
			Cook"s			
Obs	-2-1-0 1	2	D			
1	***	:	1.620			
2	;	1	0.100			
3	*	1	Ø.112			
4	†	!	0.086			
5	: :**	* ;	Ø.316			
Ó	}	1	0.0 27			
7	* 1	1	0. 439			
8	1	1	Ø. 0 16			
	Residuals		43 6 57E-18			
	Squared Resi		0.0000			
Fredict	ed Resid SS	(Press)	0.0000			
		Predict	Chal Can			
Obs	S	Value	Std Err Predict	Decides 1	Std Err Residual	Student
ous	J	AGIUE	LLEGIC	Residual	Residual	Residual
1	8E-4	9.831E-4	0.000	-1.83E-4	0.000	-0.746
$\hat{\mathbf{z}}$	7E-4	7.303E-4	0.000	-3.03E-5	0.000	-0.111
3	6E-4	2.411E-4	0.000	3.589E-4	0.000	1.381
4	0.00120	0.00105	0.000	1.532E-4	0.000	0.655
5	2E-4	6.02E-4	0.000	-4.02E-4	0.000	-1.445
6	Ø	1.388E-4	0.000	-1.39E-4	0.000	-0.566
7	0.00100	6.189E-4	0.000	3.811E-4	0.000	1.371
8	Ø	1.39E-4	0.000	-1.39E-4	0.000	- 0. 567
			Cook's			
Obs	-2-1-0 1	2	D			
1	* * *	:	Ø.131			
\hat{z}	1	;	0.001			
3			0.300			
		•				

Obs	****	2-1 -0 1 2	2	Cook's D
4	1	; *	;	0.134
5	}	**;	}	0.151
6	+	* :	:	0.077
7	ł	* *	;	0.139
8	}	* :	1	0.077

Sum of Residuals -1.19262E-18
Sum of Squared Residuals 0.0000
Predicted Resid SS (Press) 0.0000

0bs	ALIPH	fredict Value	Std Err Predict	Residual	Std Err Residual	Student Residual
1	54.2000	53.55 0 3	1.111	Ø.6497	1.264	0.514
2	49.7000	48.996 0	1.273	0.7040	1.100	0.640
3	54.8000	54.0110	0.979	0.7890	1.368	0.577
.4	44.1000	45.1201	1.026	-1.0201	1.334	-0.765
5	52.0000	54.3845	0.947	-2.3845	1.391	-1.714
6	47.5000	48.1053	0.719	-0.6053	1.521	-0.398
7	41.6000	42.0407	1.309	0.4407	1.056	-0.417
8	50.6000	48.2921	0.707	2.3079	1.527	1.511

Cook's Obs -2-1-0 1 2 * : Ø.068 **:** * 0.183 3 ***** 0.057 0.115 0.454 0.012 6 7 0.089 0.163

Sum of Residuals -7.10543E-15 Sum of Squared Residuals 14.1538 Predicted Resid SS (Press) 29.9190

Student Residual	Std Err Residual	Residual	Std Err Predict	Predict Value	ARO_ALI	Obs
-0.281	Ø. Ø58	-0.0162	0.051	Ø.8662	Ø.8500	1

			SAS	12:36 Thur	sday, March	3, 1988 19
		Predict	Std Err		Std Err	Student
Obs	ARO ALI	Value	Predict	Residual	Residual	Residual
2	1.0100	1.0471	Ø.Ø58	-Ø.Ø371	0.050	-Ø.738
.3	0.8200	0.8359	0.045	-0.0159	0.0 63	-0.255
4	1.2700	1.2206	0.047	0.0494	0.061	0.811
5	0.9200	0.8245	0.043	0.0 955	0.064	1.503
6	1.1100	1.0996	0.033	0.0104	0.069	0.150
7	1.4000	1.3647	0.060	0.0353	0.048	0.731
8	0.9700	1.0914	Ø.Ø32	-0.1214	0.070	1.740
_						
		C	Cook's			
Obs	-2-1-0 1 2	2	D			
1	;	1	0.020			
2	; *	1	0.243			
3	1	1	0.011			
4	! ! *	1	0.130			
5		l l	0.349			
6	;	1	0.002			
7	; ; *	ŀ	Ø.274			
8	***	1	Ø.216			

Sum of Residuals -1.11022E-16
Sum of Squared Residuals 0.0295
Predicted Resid SS (Press) 0.0645

Model: MODEL1 Dep Variable: S

Analysis of Variance

Source	DF.	Sum of Squares	Mean Square	F Value	Prob>F
Model Error C Total	2 5 7	ଡ. ଉଚ୍ଚରଥଣ ଡ. ଉଚ୍ଚରଥଣ ଡ. ଉଚ୍ଚରଥଣ	Ø. ØØØØØ Ø. ØØØØØØ	7.114	0.0345
Root Dep M C.V.		0.00027 0.00056 48.63004	R-Square Adj R-Sq	0.7400 0.6359	
		Paramet	ter Estimates		

Variable	DF	Parameter Estimate	Stand Er		for HØ: ameter=Ø	Prob > (T)
INTERCEP	1	0.000159	0.00015	i611	1.020	0.3547
X 2	1	-0.000150	0.00010	337	-1.453	Ø.2 Ø 58
X5	1	0.000427	0.00013	548	3.148	0.0254
		Fredict	Std Err		Std Err	Student
Obs	S	Value	Predict	Residual	Residual	Residual
1.	8E-4	7.337E-4	ଡ. ଉପ୍ତ	6.635E-5	Ø. ØØØ	0.45 3
2	7E-4	8.736E-4	0.000	-1.74E-4	0.000	-Ø.751
3	6E-4	1.828E-4	0.000	4.172E-4	0.000	1.774
4	0.00120	0.00121	0.000	-5.48E-6	0.000	-0.030
5	2E-4	4.354E-4	0.000	-2.35E-4	0.000	1.Ø3Ø
6	Ø	1.592E-4	0.000	-1.59E-4	Ø. ØØØ	-0.709
7	0.00100	7.541E-4	0.000	2.459E-4	Ø.Ø0Ø	1.034
8	Ø	1.558E-4	ଡ. ଅପଡ	-1.56E-4	Ø. ØØØ	~ ∅.6 93
		(Cook's			
Obs	-2-1-0	1 2	D			
i	;	1	0.171			
2	*	}	0.075			
3	: :*	** ;	Ø.369			
4	;	1	0.000			
5	**1	:	0.153			
5	*1	1	0.081			

SAS 12:36 Thursday, March 3, 1988 21

Sum of Residuals ~1.0571E-18
Sum of Squared Residuals 0.0000
Predicted Resid SS (Press) 0.0000

APPENDIX B

DATA TABLES

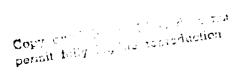
4 3	1. 1	1	 11	1

							total
NEME.	1	1 *	4	*	O CODE (S	LLML.	hetom
Makeri	0.8434	o. osy,	o. oost	റൂ. ററ്റെ	O_{\star} O_{\star}^{*} O_{\star}^{*}	J.	0.0674
Maria Co	0.8397	0.0872	O_OOS	0.0027	0.0739	P ₂	∪. ∪8≳1
NA 1 0 - 3	9.8313	0.0886	0.0066	O. OORS	0.0714	· g	0. 0891
N416-4						1.1	
N416-5						15	
N+16-6	0.8519	0.0920	0.0061	0.0021	0.0479	1.9	9.0561
N416-8							
M416-9	0.8475	0.0925	0.0053	0.0013	$O_* \cap \cup \mathcal{J}_{\mathcal{J}}$	27	0.06
NAILENGO						3 ()	
N416-11						తత	
M416 12	0.8499	0.0938	0.0057	0.0013	0.0503	ક€.	0.0573
N410-19						4.2	
NATE AT						45	
N416-17						51	
M416~18						54	
21416~19						57	
N416~a9)						East	
M410 51	0.841군	0.0958	0.0040	O. ODOZ	0.058 3	(16,	$O_{\omega} \Theta O_{\omega}$
highton in						110	
19416 11	ಲ್ಲ ಚಚಡಿದ	0.0969	O. OOTS	0,0010	$O_{\bullet} \cap C_{\circ} \cap C_{\circ}$	1.20	0.0649
rost UII	0.8376	೦. ೦೪೪೨	o. oosa	0.0039	0.06%	1_)	0.0741
N41/!	០. 8341	0.0880	0.0074			చ	0.0779
M417 - 2	೦. ಚರ್ವಜ	0.0911	0.0061			U.	0.0567
N917 3	0.8543	0.0931	0.0050			9	U. 0526
N417 - 4						1 21	
N417 (1)						15	
M447 - C	0.8527	0.0954	0.0043			18	0.0519
N417 5	75 - 11 7 73 W	275 2 5 2 2 2 1 T				≟4	
No. L.Z. P.J.	0.8497	0.0957	0.0003			27	0, 0546
N917-10						30	
NOTZ 11			200 200 200 3 0 0			ತರ ಬ	23 ES 31 A
N417-Lat	୦. ୪୫୫୦	0.1015	0.0023			ئ ن درم	0.0355
N41/19						42	
N41/ 15						45 5 1	
117-3.						51	
14417 18						54	
NATZ 19 NATZ 19						57 60	
N417 (3)	0. 8615	Q., TOH	00000			ეი ეი	O_O_94
	0.8639	0.109£	0.0000 0.0000			110	0.0254 0.0269
N417 (51)						120 120	0.045
N417-14	0.8454	0.1996	O.OOOI			150	O. OMG

Copy averbally to DAC does not permit fully legible reproduction

CHM !	$D \cap L \cap$	1-1
-------	-----------------	-----

							total
NAME.	ι, Ι	H f	1	15	O KOLEED	TIME	heteno
N414-1	0.8481	0.0913	0.0334	0.0016	0.0256	٤	O, OBOB
110.10	0.8974	0,01436,	0.0016	0.0010	0,0564	(,	0) (0) (1)
N4 19 3	O. H'CY	O. Other	0.00.3	$O_*OO\{O$	0.0471	.)	outonia.
Naio a						142	
ri419-5						15	
N414-6	0.8605	$O_{+}O^{*}\mathcal{F}\mathcal{F}\mathcal{F}$	9.0015	0.0003	0.0378	1 8	O. O.396
N414-8						설۴	
N414 🖖	0.831d	0,0999	O. VOOQ	0,0001	O. 9688	<i>27</i>	0.0689
M414-10						30	
N414-11						చిన	
N414-16	O.8384	اعد 100 م	0.0001	0,0000	0.0583		0.0584
N414 14						47	
N419-15						45	
M414 17						591	
14-14-18						ger.	
N414 I'J						57	
N414-620				21 25 25 25 25 25	25 27 N. N. L.	' بارغ د مارد	(A - (A -9517)
N414 :::1	0.8565	0.1141	0.0000	0.0000			0.0294 0.0292
N414-52	0.8570	0.1158	0.0000	0,0000			
1441年 15日	೧೯87೭3	0.1171	0.0000	0.0002			
THE UIL	0.8376	0.0883	0.0052	0.0039			
N415 1	U. 8486	0.0897	0.0054	0.0027			
N415-2	0.8464	0.0916	0.0055	0.0018			
N415 to	o. 8496	0.0914	0.0064	0.0014	o. 0512		
N415-4						1 4 5	
N415-5			and the major	and the second second second	25 - 25 E T 1 A	15	
N415-6	0.8431	0.0938	0.0035	0.0002	0.0594	· 18 24	
N415-8		ms en les	25 25 25 25 25 25	ans a fisansansansans	A A540		
N415-9	0.8502	0.0958	0.0028	0.0000	0.0518	/ <u>-</u> رائ	
N415-10						بىي دىك	
P14.1% - 1.1				43 4343434	0.0420		
Na 15 17	0.0586	0.0987	0.0007	വൂ വളവാ	CAT COMES	7 (16.1)	
M4 L5 14						45 45	
N415 1"						51	
N415-17						54	
N415-10						57	
N415-19						60 60	
N415-20	13 Ma 3 2	9 . 1978	0.0000	0.0000	0.0306		
N415 dl	೧.೮೯೭೭	0.1078	0.0000	0,0000			
N415-20	0.8600		0.0000	0.0000			
MAID-EF	0.8631	0.1096	CA COOL	CAR CACACACA	San Sallan Cha	a ali ten Su'	


LIM D. HH

							total
NEML	(Н	N	<u>15</u>	O (DIFF)	1 IME	hetero
THE UIL	U.8376	೦. ೪೪೪೩	O. OOSE	O. QOS9	0.065	Q	0.0741
M409-1	o. 8336	0.0883	0.0065	0.0028	មន្ទេស មាន	ದ	0.0781
MARINE	0.8411	ប. កមម្ព	O. OOTE	0.0023	0.0048	E,	0.07
Marrie	OLEUMOLE	O. OBSS	0. ០០៦៩	0.0010	4. USQ1	۱,	0.0599
Macott a						1.1	
Place						113	
Mary C	O. Ostad	(।. () प्रदेव	$O_n \cap OO_{n-1}$	$O^* \cap OOOO$	0.9657	18	0.0694
M40A~R						c141	
F1405 (1	U. 8454	O. OHAA.	O_OQE()	$O_* \cup \cup \cup \cup$	Ow Obligation	27	0.0614
44004-10						لان.	
M407 41						ವವ	
12000 B 120	O.8566	0.0960	O. DOMO	O^* OCOO	O. 0418	ან	U. 0474
लिकारी-14						42	
M409 [n						45	
8140/3~17						51	
14907 (18						54	
M4050 - 111						57	
N409 5.0						60	
M409-J1	0.8796	0.1038	0.0011	O. OÕÕÕ	0.0155	90	0.0166
NACH PL	0.8794	0.1077	0.0016	0.0000	0.0113	110	0.0129
MACCO ELL	08680	0.1082	0.0028	0.0007	0.0203	120	0.0238
THE UT	0.8376	០. ១៥៥នី	0.0052	0.0039	0.065	()	0.0741
M415 1	0.8307	0.0862	0.0084	0.0028	0.0719	ۍ	0.0831
M413 2	o. 8366	0.0871	0.0102	0.0029	0.0632	6	0.0763
M44 5 2	O. 8443	0.0888	Q., QQ87	0.0019	9.0563	F.	0.0669
0441 1 0						182	
N4 1 3-7						15	
M413~6	0.8377	0.0904	0.0058	0.0005	ು. ೧೯೭೬	18	0.0719
M413-13						214	
pinkt vitte	∿.8245	0.0901	0.0056	0.0000	0.0798	21	0.0854
Not to pro						3 0	
61 5 1 1						33	
100 Car 1 12 Car	V.80a6	0.0876	0.0067	0.0000	0.1031	ు 6	0.1098
4.						42	
Sec. 3 14.16						45	
N413-17						51	
MO13-18						54	
N412-12						57	
N41350						60	
Ned you	9.8311	0.1027	0.0047	0.0000	0.0615	90	0.0662
P 64 () , ()	ು. ಟಕರತ	0.0989	0.004Z	0.0000	0.0760	110	0.0802
PH4-1 5 (.11)		11, 1111	$Q_{\bullet},Q_{\bullet}Q_{\bullet}Z_{\bullet}Z_{\bullet}$	0.0012	0.0397	120	0.0431

							total
NEME	U	H	N	()	n (DTFE)		hetero
HU NH:	0. B576	೧. ೧೪೮೨	0.0052	0.0039		()	97. Q / 4 L
NATO 1	O. Obligation	0.0912	O. OOM	0.0011			0.0555
N410 Z	9. B554	O_O5554	0.0043	0, 9009	0.0470		e, esca
r1410 - 3	೧೯೪೭ಇ	0.0945	0.0062	0.0004	0.0458	• 9	O. Obald
N410-4						12	
N410-5						15	
N410-6	೪. 8652	0.0975	0.0030	0.0000	೦.೦333	18	o.0363
N410 -8						24	
M410-9	0.8700	0.1001	0.0089	0.0000	0.0870		0.9299
M410 (10						30	
N410-1!						3.5	
N410-1d	O. 8684	0.1022	0.0018	0.0000	0.0336	<i>36,</i>	0.0554
N410-14						4	
N410-15	0.8821	0.1049	0.0000	0.0000	0.0121	45	9.913
NATOHIA						51	
N410-18	0.8789	0.1060	0.0004	0.0000	0.0147	54	0.0153
N410-19						57	
MATO - E01						6.0	
N410 E1	0.8796	0.1181	0.0000	0.0000	0.0083	200	$\alpha_* \cos \beta_{33}$
N410 551	0.8879	0.4137	0.0000	0.0000	0. 0000	1.10	′•
N410~EP	0.8745	0.1141	0.0004	0.0006	0.0104	1 600	0.0119
THR OTE	O.8376	0.0883	೦.೦೦5೭	U, UQ39	0.065	e 1	0.0291
N40U-1	0.8530	୍. ୦୫୫୫	0.0068	0.0047	0.0467	es.	O. OSBE
1940년~근	0.8601	0.0903	0.0060	0.0020	0.0416	(5	0.0496
N498-3						N.	
N408-4	0.8499	0.0926	0.0025	0.0010	0.0540	1.5	0.05/5
N498~5						15	
N408-6						18	
N408-8						4	
M408-9	0.8759	0.1003	0.0017	0.0000	0.0221	27	リ. りこづな
N408-10						30	
N408 -11						తేత	
M408-12	0.8717	0.1043	0.0003	0.0000	0.0237	ತು	O. Od 4
N408-14						42	
N408-15						45	
N408-17						51	
N408-18						E. CAR	
N408-19	0.8718	0.1056	O. OQQQ	0.0000	೦.೦೭೭6	57	$O_{+}O_{0} \circ C_{0}$
N408-20	0.8786	0.1081	0.0000	0.0000	0.0133	$t_{2}(1)$	$\phi_* \phi_1 \phi_2$
N498 -23						90	
N408-글리	0.8705	0.1173	0.0000	0.0000	೦.೦1೭೭	110	0.0122
MAQB -EP	0.8715	0.1169	0.0000	0.0008	0.0108	1 at O	0.0116

1.3	H	N (((11:	ı	ì

							total
MEDMIL.	t _w	H	N	5,	Carteas	I LIMI-	netero
M4185 1	0.8519	റ. വട്ടറ്റ	\mathcal{O}^* \mathcal{O} \mathcal{O} \mathcal{O}			.5	0.0581
N/4185 51	0.8478	0.0901	ω_* ω_0			6.	Θ_{\bullet} O(a.17)
N +135m 35	0.8525	0.0908	0.0067			·-;	0.0567
N418-9						12	
144 1 3 - 1						15	
M418-6	O.8420	0.0916	0.0059			18	0.0664
M418-8						<u>24</u>	
N418-9	ം. ദേഷമല	0.0917	0.0001			d7	0.0701
N418-10						30	
N41U-11						33	
N418-1E	0.8573	0.0954	0.0040			36	0.0473
N418-14						4글	
M418 45						45	
N418-17						51	
M418-18						54	
N919 (1)						57	
M418 70						60	
N418 5/1	0,8541	0.1017	0.0050			90	0.0442
N4 18-32						110	
1141844	o. 85 8 6	0.1042	0.0043			1 at 0	0.0372
Mal'r Li	0.8627	0.1095				14:0	
CHM DOTH							
							total
NAME	€	11	N	5	Ü (D1FF)	T I ME	hetero
					O (DIII)		
N4RO-1	0.85క	0.0915	0.0044		C (DIII)	ತ	o. 0555
N420-1 Nac'o a'	0.853 0.8579	0.0915 0.0901	0.0044 0.0027			చ ట	0.0555 0.052
N4d0+1 Nad0+2 Nad0+3	0.85క	0.0915	0.0044			ა ნ 9	0.0555 0.053
N420 - 1 N420 - 2 N420 - 3 N420 - 4	0.853 0.8579	0.0915 0.0901	0.0044 0.0027			ა ნ 9 12	0.0555 0.052
N420 * 1 N420 * 2 N420 * 4 N420 * 5	0.853 0.8579 0.8439	0.0915 0.0901 0.0885	0.0044 0.0027 0.0036			ა 9 12 15	0.0555 0.052 0.0676
N420-1 N420-2 N420-3 N420-5 N420-5 N420-6	0.853 0.8579	0.0915 0.0901	0.0044 0.0027 0.0036			ය 9 12 15 18	0.0555 0.052
N420 - 1 N820 - 2 N420 - 3 N420 - 5 N420 - 5 N420 - 6 N420 - 8	0.853 0.8579 0.8439 0.8405	0.0915 0.0901 0.0885 0.0897	0.0044 0.0027 0.0036 0.0052			ය 9 12 15 18 24	0.0555 0.052 0.0676 0.0698
N420 - 1 N420 - 2 N420 - 5 N420 - 5 N420 - 6 N420 - 6 N420 - 6 N430 - 8	0.853 0.8579 0.8439	0.0915 0.0901 0.0885	0.0044 0.0027 0.0036			3 9 12 15 18 24 27	0.0555 0.052 0.0676
N420-1 N420-2 N420-5 N420-5 N420-6 N420-8 N420-9 M420-10	0.853 0.8579 0.8439 0.8405	0.0915 0.0901 0.0885 0.0897	0.0044 0.0027 0.0036 0.0052			3 9 12 15 18 24 27 30	0.0555 0.052 0.0676 0.0698
N420-1 N420-2 N420-5 N420-5 N420-5 N420-6 N420-9 N420-10 N420-10	0.853 0.8579 0.8439 0.8405 0.8431	0.0915 0.0901 0.0885 0.0897 0.0911	0.0044 0.0027 0.0036 0.0052			3 9 12 15 18 24 27 30 33	0.0555 0.0576 0.0678 0.0698
N420-1 N420-2 N420-5 N420-5 N420-5 N420-6 N420-9 M420-10 M420-10 M420-10	0.853 0.8579 0.8439 0.8405	0.0915 0.0901 0.0885 0.0897	0.0044 0.0027 0.0036 0.0052			3 9 12 15 18 24 27 30 33 36	0.0555 0.052 0.0676 0.0698
N420 - 1 N420 - 2 N420 - 5 N420 - 5 N420 - 5 N420 - 6 N420 - 10 M420 - 10 M420 - 10 N420 - 10 N420 - 10	0.853 0.8579 0.8439 0.8405 0.8431	0.0915 0.0901 0.0885 0.0897 0.0911	0.0044 0.0027 0.0036 0.0052			3 9 12 15 18 24 27 30 33 36 42	0.0555 0.0576 0.0678 0.0698
NAZO 1 NAZO 2 NAZO 4 NAZO 5 NAZO 5 NAZO 6 NAZO 2 SAZO 10 NAZO 10 NAZO 12 NAZO 12 NAZO 12 NAZO 12 NAZO 12 NAZO 12	0.853 0.8579 0.8439 0.8405 0.8431	0.0915 0.0901 0.0885 0.0897 0.0911	0.0044 0.0027 0.0036 0.0052			3 9 12 15 18 24 27 30 35 42 45	0.0555 0.0576 0.0678 0.0698
N420 - 1 N420 - 2 N420 - 5 N420 - 5 N420 - 6 N420 - 10 M420 - 10 M420 - 17 N420 - 14 N420 - 14 N420 - 15 N420 - 15	0.853 0.8579 0.8439 0.8405 0.8431	0.0915 0.0901 0.0885 0.0897 0.0911	0.0044 0.0027 0.0036 0.0052			3 6 9 12 15 18 24 30 36 45 51	0.0555 0.0576 0.0678 0.0698
N420 - 1 N420 - 2 N420 - 5 N420 - 5 N420 - 6 N420 - 10 M420 - 10 M420 - 10 N420 - 14 N420 - 14 N420 - 15 N420 - 15	0.853 0.8579 0.8439 0.8405 0.8431	0.0915 0.0901 0.0885 0.0897 0.0911	0.0044 0.0027 0.0036 0.0052			3 6 9 12 15 18 24 33 36 45 51 54	0.0555 0.0576 0.0678 0.0698
N420 - 1 N420 - 2 N420 - 3 N420 - 5 N420 - 5 N420 - 6 N420 - 10 N420 - 10 N420 - 12 N420 - 14 N420 - 15 N420 - 17	0.853 0.8579 0.8439 0.8405 0.8431	0.0915 0.0901 0.0885 0.0897 0.0911	0.0044 0.0027 0.0036 0.0052			3 6 9 12 15 18 24 30 33 54 45 15 54 57	0.0555 0.0576 0.0678 0.0698
N420 - 1 N420 - 2 N420 - 3 N420 - 5 N420 - 5 N420 - 6 N420 - 10 N420 - 12 N420 - 14 N420 - 15 N420 - 17	0.853 0.8579 0.8439 0.8405 0.8584	0.0915 0.0901 0.0885 0.0897 0.0911	0.0044 0.0027 0.0036 0.0052 0.0054			3 9 12 15 18 24 33 34 45 51 54 50	0.0555 0.0676 0.0698 0.0658 0.0463
N420 - 1 N420 - 2 N420 - 3 N420 - 5 N420 - 5 N420 - 6 N420 - 10 N420 - 10 N420 - 10 N420 - 12 N420 - 13	0.853 0.8579 0.8439 0.8405 0.8584	0.0915 0.0985 0.0897 0.0911 0.0953	0.0044 0.0027 0.0036 0.0052 0.0054 0.0041			3 6 9 12 15 18 24 7 33 34 45 51 54 7 60 90	0.0555 0.0676 0.0698 0.0658 0.0463
N420 - 1 N420 - 2 N420 - 3 N420 - 5 N420 - 5 N420 - 6 N420 - 10 N420 - 10 N420 - 12 N420 - 12 N420 - 12 N420 - 13	0.853 0.8579 0.8439 0.8405 0.8584 0.8584	0.0915 0.0885 0.0897 0.0911 0.0953	0.0044 0.0027 0.0036 0.0052 0.0054 0.0041			3 9 12 15 18 24 27 30 33 36 42 45 51 54 50 90 120	0.0555 0.0676 0.0698 0.0658 0.0463 0.0463
N420 - 1 N420 - 2 N420 - 3 N420 - 5 N420 - 5 N420 - 6 N420 - 6 N420 - 10 N420 - 11 N420 - 10 N420 - 11 N420 - 11 N420 - 11 N420 - 11	0.853 0.8579 0.8439 0.8405 0.8584 0.8584 0.8584	0.0915 0.0901 0.0885 0.0897 0.0911 0.0953	0.0044 0.0027 0.0036 0.0052 0.0054 0.0041			3 9 12 15 18 24 27 30 33 36 42 45 54 50 90 120 120	0.0555 0.0676 0.0698 0.0658 0.0463 0.0463 0.0474
N420 - 1 N420 - 2 N420 - 3 N420 - 5 N420 - 5 N420 - 6 N420 - 6 N420 - 10 N420 - 12 N420 - 12 N420 - 13	0.853 0.8579 0.8439 0.8405 0.8531 0.8584 0.8586 0.8376	0.0915 0.0901 0.0885 0.0897 0.0911 0.0953 0.0953 0.0983	0.0044 0.0027 0.0036 0.0052 0.0054 0.0041	v. 0039	0.065	3 9 12 15 18 24 27 30 33 36 42 45 54 50 90 120 0	0.0555 0.052 0.0676 0.0698 0.0658 0.0463 0.0463 0.0463
N420 - 1 N420 - 2 N420 - 3 N420 - 5 N420 - 5 N420 - 6 N420 - 6 N420 - 10 N420 - 12 N420 - 12 N420 - 12 N420 - 13 N42	0.853 0.8579 0.8439 0.8405 0.8431 0.8584 0.836 0.836 0.8376 0.8376	0.0915 0.0901 0.0885 0.0897 0.0911 0.0953 0.0953 0.0983 0.1041 0.0883 0.1028	0.0044 0.0027 0.0036 0.0054 0.0041 0.0041 0.0026 0.0026 0.0027 0.0023	o. 0039 o. 0008	U.065 O.0567	3 6 9 12 15 18 24 27 30 33 36 42 45 51 54 57 60 90 120 120 120	0.0555 0.0676 0.0698 0.0658 0.0463 0.0463 0.0463 0.0499 0.0741 0.0598
N420 - 1 N420 - 2 N420 - 3 N420 - 5 N420 - 5 N420 - 6 N420 - 6 N420 - 10 N420 - 12 N420 - 12 N420 - 13	0.853 0.8579 0.8439 0.8405 0.8531 0.8584 0.8586 0.8376	0.0915 0.0901 0.0885 0.0897 0.0911 0.0953 0.0953 0.0983	0.0044 0.0027 0.0036 0.0052 0.0054 0.0041	v. 0039	0.065 0.0567 0.0226	3 9 12 15 18 24 27 30 33 36 42 45 54 50 90 120 0	0.0555 0.0676 0.0698 0.0658 0.0463 0.0463 0.0463

	AROMATICS DATA			
	Aromatic	Phenolic OH	Methoxy/Fluor	Acenaph.
NAME	9.0-5.9ppm	5.2-4.4ppm	4.4-3.5ppm	3.5-3.3pp
TARPHEN				
PROD				
JET A				
TAR OIL	25.8	1.5	2.6	0.8
TAR OIL	25.8	1.5	2.6	0.8
N410-1	40 -	- 4		
N410-2	18.5	2.1	2.6	0.8
N410-3				
N410-4				
N410-5	40.5		4.6	
N410-6	19.6	1.4	1.8	0.6
N410-8				
N410-9				
N410-10				
N410-11	4.6	4 5	_	. ~
N410-12	16.1	1.3	2	0.7
N410-14				
N410-15				
N410-17			4 -	
N410-18	14.8	0.8	1.3	0.5
N410-19		•		
N410-20				
N410-21				
N410-22 N410-EP	11.1	1	1.1	0.3
TAR DIL	25.8	1.5	2.6	0.8
N408-1	23.0	1.5	2.6	0.6
N408-1 N408-2	20.3	0.7	2.2	0.7
N408-3	20.3	0.7	2.2	0.7
N408-3				
N408-5	13.7	1.5	2.2	0.7
N408-6	13.7	1, 3	E • E	0.7
N408-8				
N408-9				
N408-10				
N408-11				
N408-12	13.4	1.6	2	0.6
N408-14	10. 7	1.0	lä.	0.0
N408-15				
N408-17				
N408-18				
N408-19	12.4	1	1.6	0.6
N408-20	4 to 1 7	4	2.0	0.6
N408-21				
N408-22				
N408-EP	10.5	0.9	1.2	0.3
		V	* · ·	0.0

	AROMATICS DATA Aromatic	Phenolic OH	Mathaus /Eluan	Acenaph.
NAME	9.0-5.9ppm	5.2-4.4ppm	Methoxy/Fluor 4.4-3.5ppm	3.5-3.3pp
TAR OIL	25.8	1.5	2.6	0.8
N409-1				
N409-2	22.1	0.6	1.3	0.4
N409-3				
N409-4				
N409-5				
N409-6	19.4	1.2	1.7	0.4
N409-8				
N409-9				
N409-10		•		
N409-11	10.0	1.8	2.1	0.7
N409-12	18.2	1.8	e. I	0. 7
N409-14		•		
N409-15 N409-17				
N409-18	18.5	1.2	1.8	0.6
N409-19	10.0	4 • t	1.0	0. 0
N409-20				
N409-21				
N409-22				
N409-EP	14.2	0.5	1	0.4
TAR OIL	25.8	1.5	2.6	0.8
N413-1				
N413-2	21.6	2.6	2.4	0.7
N413-3				
N413-4				
N413-5	21.2	1.6	2.1	
N413-6	20 .6	1.9	2	0.7
N413-8				
N413-9				
N413-10				
N413-11				
N413-12	18.7	2	2.3	O. 8
N413-14				
N413-15				
N413-17				
N413-18				
N413-19 N413-20				
N413-20 N413-21				
N413-22 N413-22				
N413 EE	16.3	1.3	2.5	0.7
TAR OIL	25.8	1.5	2.6	0.B
N414-1				
N414-2				
N414-3	18.7	1.4	2.3	
N414-4				
N414-5	17.2	1	1.3	
N414-6				
N414-8	13.2	1.5	1.7	
N414-9				
N414-10		**0		

	AROMATICS DATA			
	Aromatic	Phenolic OH	Methoxy/Fluor	Acenaph.
NAME	9.0-5.9ppm	5.2-4.4ppm	4.4-3.5ppm	3.5-3.3pp
N414-11	12.4	1.4	2. 1	
N414-12				
N414-14				
N414-15				
N414-17				
N414-18	11.7	1	2	
N414-19				
N414-20				
N414-21				
N414-22				
N414-EP	10.1	0.6	1.3	0.4
TAR DIL				
N415-1				
N415-2				
N415-3	20.2	1.6	2.2	
N415-4		•		
N415-5	19.4	1.6	2.2	
N415-6				
N415-8	18.9	1.5	2.2	
N415-9				
N415-10				
N415-11	16.7	1.5	2.2	
N415-12	-0			
N415-14				
N415-15				
N415-17				
N415-18	15	1	1.2	
N415-16	15	•		
N415-20				
N415-21				
N415-22				
N415-EP	12.8	1.1	2.1	
TAR DIL	12.0	1.1	C. 1	
N416-1				
N416-2				
N416-3				
N416-4				
N416-5		•		
N416-6	O4 4	4 -7	-	
N416-B	21.4	1.7	5	
N416-9				
N416-10		4 0		
N416-11	20.3	1.8	2.2	
N416-12				
N416-14				
N416-15				
N416-17			2.2	
N416-18	18.9	1.6	2.2	
N416-19	4 *** ***	_		
N416-20	17.3	2	2.3	
N416-21				
N416-22		RQ		

	AROMATICS DATA Aromatic	Phenolic OH	Methoxy/Fluor 4.4-3.5ppm	Acenaph. 3.5-3.3pp
NAME	9.0-5.9ppm	5.2-4.4ppm	4.4-3.5ppm	3.0-0.0pp
N416-EP TAR OIL N417-1 N417-2	18.4	1.9	2.6	
N417-3 N417-4 N417-5	19.8	1.6	2.1	
N417-6 N417-8 N417-9	18.1	1.4	1.9	
N417-10 N417-11	16.3 16.7	1.3 1.1	1.7 1.2	
N417-12 N417-14 N417-15				
N417-17 N417-18 N417-19	14.9 14.7	1 1.5	1.4 2.3	
N417-20 N417-21 N417-22 N417-EP	11.1	1.4	2.6	
TAR OIL N418-1 N418-2 N418-3				
N418-4 N418-5 N418-6	22.2	1.6	2.4	
N418-8 N418-9 N418-10 N418-11	20.7	1.3	1.8	
N418-12 N418-14 N418-15 N418-17				
N418-18 N418-19 N418-20	18	1.4	1.8	
N418-21 N418-22 N418-EP TAR OIL	16.9	2.3	1.3	
N419-1 N419-2 N419-3 N419-4				
N419-5 N419-6 N419-8 N419-9	18.4	1.8	2.1	

NAME	ARDMATICS DATA Aromatic 9.0-5.9ppm	Phenolic OH 5.2-4.4ppm	Methoxy/Fluor 4.4-3.5ppm	Acenaph. 3.5-3.3pp
N419-10				
N419-11				
N419-12	18	1.4	2.4	
N419-14				
N419-15				
N419-17				
N419-18	15.8	1	1.8	
N419-19				
N419-20				
N419-21				
N419-22				
N419-EP	13.9	1	2.4	
TAR OIL				
N420-1				
N420-2				
N420-3				
N420-4	23. 1	1.7	1.9	
N420-5				
N420-6				
N420-8				
N420-9	20.4	1.5	1.9	
N420-10	20.1	1.5	1.9	
N420-11				
N420-12	18.8	1.3	1.7	
N420-14	18.8	1.3	1. /	
N420-15 N420-17				
N420-17				
N420-18				
N420-20				
N420-21				
N420-22				
N420-EP	16.2	1	1.9	
TAR DIL				
N421-1				
N421-2				
N421-3				
N421-4				
N421-5	20.6	1.6	1.9	
N421-6				
N421-8				
N421-9				
N421-10	18.6	1.7	2.3	
N421-11				
N421-12				
N421-14				
N421-15				
N421-17	155. 4	1.6	2.2	
N421-18 N421-19	15. 4	1.0	E. E	
N421-19 N421-20				
N421-20 N421-21				
14461-61		B11		

B11

AROMATICS DATA

Aromatic

9.0-5.9ppm

Phenolic OH 5.2-4.4ppm Methoxy/Fluor 4.4-3.5ppm Acemaph. 3.5-3.3pp

N421-22

NAME

N421-EP

14.9

1.7

2.2

l		Aloba to Aromatic	Beta to Aromatic	Cyclohexane
NAME	w	3.3-1.9ppm	1.9-1.5ppm	1.43ppm
CHN DATA				
NAME	m	Alpha to Aromatic 3.3-1.9ppm	Beta to Aromatic 1.9-1.5ppm	Cyclohexane 1.43ppm
TARPHEN				
PROD				
JET A				
TAR DIL		30.9	6. 5	0
TAR OIL		30.9	6.5	o
N410-1			,	_
N410-2		28	6.7	O
N410-3				
N410-4 N410-5				
N410-5 N410-6		25.1	8.3	0
N410-8		20		·
N410-9				
N410-10				
N410-11				
N410-12		24	9.5	0
N410-14				
N410-15				
N410-17		00.4	40.4	0.7
N410-18		22.4	10.1	2.3
N410-19 N410-20				
N410-21				
N410-22				
N410-EP		19	12.7	3.3
TAR OIL		30.9	6.5	O
N408-1				
N408-2		24.6	7.2	0
N408-3				
N408-4		~ 4	7.0	•
N408-5		24	7.8	0
N408-6 N408-8				
N408-8				
N408-10				
N408-11				
N408-12		24	11	o
N408-14				
N408-15				
N408-17				
N408-18		25 6	17.0	0
N408-19 N408-20		22.8	13.2	0
N408-21				
N408-22				
N408-EP		18.6	14.3	4

NAME	to	Alpha to Aromatic 3.3-1.9ppm	Beta to Aromatic 1.9-1.5ppm	Cyclohexane 1.43ppm
TAR OIL		30 . 9	6.5	0
N409-1				
N409-2		2 8. 2	6.2	O
N409-3				
N409-4				
N409-5				
N409-6		26.9	5. 1	O
N409-8				
N409-9				
N409-10				
N409-11				
N409-12		26.7	7.3	0
N409-14				
N409-15				
N409-17				
N409-18		25	9.2	O
N409-19				
N409-20				
N409-21				
N409-22		22.4	11.9	3
N409-EP TAR OIL		30.9	6.5	3 0
N413-1		30. 3	0. 3	U
N413-2		28.8	6.5	o
N413-3				v
N413-4				
N413-5		27 . 8	7.6	0
N413-6		26.7	7.2	O
N413-8				
N413-9				
N413-10				
N413-11				
N413-12		25.9	8.4	0
N413-14				
N413-15				
N413-17				
N413-18				
N413-19 N413-20				
N413-21				
N413-22				
N413-EP		24.2	10.9	2.8
TAR OIL		30.9	6.5	0
N414-1				•
N414-2				
N414-3		26.3	9.6	o
N414-4				-
N414-5		24.9	9.8	0
N414-6		•		
N414-8		23.2	10.1	0
N414-9				
N414-10			R14	

NAME	ſŧŧ	Alpha to Aromatic 3.3-1.9ppm	Beta to Aromatic 1.9-1.5ppm	Cyclohexane 1.43ppm
N414-11		23.3	11.4	0
N414-12				-
N414-14				
N414-15				
N414-17				
N414-18		22	12.4	o
N414-19				-
N414-20				
N414-21				
N414-22				
N414-EP		19.3	16.2	3.8
TAR DIL		13.0		
N415-1				
N415-2				
N415-3		27 . i	8. 1	
N415-4		L/.1	0.1	
N415-5		27.7	8.2	
N415-6			0.2	
N415-8		26.3	9.3	
N415-8 N415-9		20.3	5. 3	
N415-10				
N415-10 N415-11		25. 9	9. 7	
		EJ. 3	3. (
N415-12				
N415-14				
N415-15				
N415-17		04.4	10.0	
N415-18		24.1	10.8	
N415-19		•		
N415-20				
N415-21				
N415-22			4-1	
N415-EP		23. 1	13.4	
TAR DIL				
N416-1				
N416-2				
N416-3				
N416-4				
N416-5				
N416-6				
N416-8		27	7.8	
N416-9				
N416-10				
N416-11		27.4	7.9	
N416-12				
N416-14				
N416-15				
N416-17				
N416-18		26.5	9	
N416-19				
N416-20		26.1	8. 1	
N416-21				
N416-22				

NAME	m	Alpha to Aromatic 3.3-1.9ppm	Beta to Aromatic 1.9-1.5ppm	Cyclohexane 1.43ppm
N416-EF		2 5. 9	9.5	
TAR DIL				
N417-1				
N417-L				
N417-3				
N417-4		27.5	8. 1	
N417-5				
N417-6				
N417-8		26.1	9.5	
1417-9				
N417-10		25. 1	9. 7	
N417-11		24.5	10	
N417-12				
N417-14				
N417-15				
N417-17		24	10.9	
N417-18		24.5	10.9	
N417-19				
N417-20				
N417-21				
N417-22			40.0	
N417-EF		21.9	12.3	
TAR DIL				
N418-1				
N418-2				
N418-3		20 2	7.6	
N418-4		28.2	7.6	
N418-5				
N418-6				
N418-8				
N418-9 N418-10		26.6	8.4	
N418-10 N418-11		20.0	0. 4	
N418-11 N418-12				
N418-14				
N418-15				
N418-17				
N418-18		25.9	9. 1	
N418-19				
N418-20				
N418-21				
N418-22				
N418-EP		24.1	9.8	
TAR OIL				
N419-1				
N419-2				
N419-3				
N419-4				
N419-5				
N419-6		m.e		
N419-8		26	9.3	
N419-9				

NAME	m	Alpha to Aromatic 3.3-1.9ppm	Beta to Aromatic 1.9-1.5ppm	Cyclohexane 1.43ppm
N419-10				
N419-11				
N419-12		26.6	9.9	
N419-14		20.0		
N419-15				
N419-17				
N419-18		24.9	10.5	
N419-19				
N419-20				
N419-21				
N419-22				
N419-EP		24.1	12.3	
TAR OIL				
N420-1				
N420-2				
N420-3				
N420-4		28.3	7.2	
N420-5				
N420-6				
N420-8				
N420-9				
N420-10		27.4	8.6	
N420-11				
N420-12				
N420-14		27	9.2	
N420-15				
N420-17				
N420-18 N420-19				
N420-20				
N420-21				
N420-22				
N420-EP		25.7	11.5	
TAR OIL				
N421-1				
N421-2				
N421-3				
N421-4				
N421-5		27.4	7.6	
N421-6				
N421-8				
N421-9			_	
N421-10		26.7	9	
N421-11				
N421-12				
N421-14				
N421-15 N421-17				
N421-17 N421-18		25.3	9.5	
N421-10			J. U	
N421-20				
N421-21				
14-10-7				

B17

Alpha to Aromatic Beta to Aromatic Cyclohexane 3.3-1.9ppm 1.9-1.5ppm 1.43ppm

NAME fit

N421-22

12 23.8 N421-EP

NAME	Methylene 1.5-1.Oppm	Methyl 1.0-0.2ppm	Aromatic F	Aliphatic H	ı
CHN DATA	Methylene 1.5-1.Oppm	Methyl 1.0-0.2ppm	Aromatic A	Aliphatic H	I
TARPHEN PROD JET A					
TAR OIL	22.4	9.5	68.1	31.9	
				Ar	o:Ali
TAR DIL N410-1	22.4	9 , 5	68. 1	31.9	2.13
N410-2	29.1	12.3	58.7	41.4	1.42
N410-3					
N410-4					
N410-5		_			
N410-6	29.3	13.8	56.8	43.1	1.32
N410-B					
N410-9					
N410-10					
N410-11	24.0	14.5	53.6	46.3	1.16
N410-12	31.8	14.5	33.6	40.3	1.16
N410-14					
N410-15					
N410-17 N410-18	30.8	17	49.9	50.1	1.00
N410-18	30.0		73.3	50.1	1.00
N410-20					
N410-21					
N410-22					
N410-EF	30.4	21.1	45.2	54.8	0.82
TAR DIL	22.4	9.5	68. 1	31.9	2.13
N408-1					
N408-2	31	13.4	5 5. 7	44.4	1.25
N40B-3					
N408-4					
N408-5	35.2	15	49.9	50.2	0.99
N408-6					
N408-8					
N408-9 N408-10					
N408-11					
N408-12	32.8	14.6	52.6	47.4	1.11
N408-14	52.70		22.4		
N408-15					
N408-17					
N408-18					
N408-19	32	16.3	51.6	48.3	1.07
N408-20					
N408-21					
N408-22					
N408-EP	28.7	21.5	45.8	54.2	0.85

NAME	Methylene 1.5-1.Oppm	Methyl 1.0-0.2ppm	Aromatic	Aliphatic H	Aro: Ali
TAR DIL N409-1	22.4	9.5	68.1	31.9	2.13
N409-2 N409-3 N409-4	27.9	13.3	58.8	41.2	1.43
N409-5 N409-6 N409-8 N409-9 N409-10	30.9	14.7	54.7	45.6	1.20
N409-11 N409-12 N409-14 N409-15	30.1	13.1	56.8	43.2	1.31
N409-17 N409-18 N409-19 N409-20 N409-21	29.7	14	56.3	43.7	1.29
N409-22 N409-EP TAR DIL N413-1	28 22. 4	18.7 9.5	50.4 68.1	49.7 31.9	1.01 2.13
N413-2 N413-3 N413-4	26. 1	11.3	62.6	37.4	1.67
N413-5 N413-6 N413-8 N413-9 N413-10	27.2 28.2	12.6 12.7	60.3 59.1	39.8 40.9	1.44
N413-11 N413-12 N413-14 N413-15 N413-17 N413-18 N413-19 N413-20 N413-21 N413-22	28.9	13	58. 1	41.9	1.39
N413-EP TAR OIL N414-1 N414-2	25.5 22.4	15.8 9.5	55.9 68.1	44.1 31.9	1.27 2.13
N414-3 N414-4	28.2	13.4	58.3	41.6	1.40
N414-5 N414-6	30.6	15.2	54.2	45.8	1.18
N414-8 N414-3 N414-10	33.5	16.9	49.7	50.4	0.99
		D 0.0			

	Methylene	Methyl	Overstie	Aliphatic H	
NAME	1.5-1.Jppm	1.0-0.2ppm	Hromatic	HITPHAUTC D	Aro: Ali
N414-11	33.8	15.7	50.6	49.5	1.02
N414-12	00.0				
N414-14					
N414-15					
N414-17					
N414-18	33.2	17.7	49.1	50.9	0.96
N414-19					
N414-20					
N414-21					
N414-22					
N414-EP	27.9	20.3	47.9	52	0.92
TAR OIL					
N415-1					
N415-2					
N415-3	27.9	13	59.2	40.9	1.45
N415-4					
N415-5	28	12.9	59. 1	40.9	1.44
N415-6					
N415-8	28.1	13.6	58.2	41.7	1.40
N415-9		•			
N415-10					
N415-11	29.5	14.4	56	43.9	1.28
N415-12					
N415-14					
N415-15					
N415-17					
N415-18	31.3	16.7	52.1	48	1.09
N415-19					
N415-20					
N415-21					
N415-22					
N415-EP	30	17.5	52.5	47.5	1.11
TAR OIL					
N416-1					
N416-2					
N416-3					
N416-4					
N416-5					
N416-6					
N416-8	27.1	13.1	59.9	40.2	1.49
N416-9					
N416-10					
N41E-11	27.1	13.2	59.6	40.3	1.48
N416-12					
N416-14					
N416-15					
N416-17			## · ·	44.0	
N416-18	28.2	13.6	58. 2	41.8	1.39
N416-19	en en		-	A.A. 55	4 00
N416-20	30.1	14.1	55.8	44.2	1.26
N416-21					
N416-22		B21			
		DZI			

NAME	Methylene 1.5-1.Oppm	Methyl 1.0-0.2ppm	Aromatic	Aliphatic H	Am. Ali
N416-EP TAR OIL N417-1 N417-2 N417-3	27.4	14.2	58.3	41.6	Aro: Ali
N417-4 N417-5 N417-6	27.5	13.4	59. 1	40.9	1.44
N417-8 N417-9	28.9	14.1	57	43	1.33
N417-10 N417-11 N417-12 N417-14	30.4 30.6	15.5 15.8	54. 1 53. 5	45. 3 46. 4	1.18 1.15
N417-15 N417-17 N417-18 N417-19 N417-20	31.2 30.6	16.6 15.5	52.2 53.9	47.8 46.1	1.09 1.17
N417-21 N417-22 N417-EP TAR OIL N418-1	32.1	18.5	49.3	50.6	0.97
N418-2 N418-3 N418-4 N418-5 N418-6	26	12. i	62	38 . i	1.63
N418-8 N418-9 N418-10 N418-11 N418-12 N418-14	27.9	13.4	58.8	41.3	1.42
N418-15 N418-17 N418-18 N418-19 N418-20 N418-21	29.4	14.3	56.2	43.7	1.29
N418-22 N418-EP TAR OIL N419-1 N419-2 N419-3 N419-4	29.5	16. 1	54.4	45.6	1.19
N419-5 N419-6 N419-8 N419-9	28.7	13.7	57.6	42.4	1.36

NAME	Methylene 1.5-1.Oppm	Methyl 1.0-0.2ppm	Aromatic	Aliphatic H	Aro:Ali
N419-10					
N419-11					
N419-12	28.7	13.1	58.3	41.8	1.39
N419-14					
N419-15					
N419-17					
N419-18	31	15.1	54	46.1	1.17
N419-19					
N419-20					
N419-21					
N419-22					
N419-EP	29.7	16.5	53.7	46.2	1.16
TAR DIL					
N420-1					
N420-2					
N420-3					
N420-4	26.1	11.6	62.2	37.7	1.65
N420-5					
N420-6					
N420-8					
N420-9					
N420-10	27.4	13.1	59.5	40.5	1.47
N420-11					
N420-12					
N420-14	28.3	13.7	58	42	1.38
N420-15					
N420-17					
N420-18					
N420-19					
N420-20					
N420-21					
N420-22					
N420-EP	28.2	15.4	56.3	43.6	1.29
TAR DIL					
N421-1					
N421-2					
N421-3					
1421-4					
N421-5	27.5	13.5	59. 1	41	1.44
N421-6					
N421-8		•			
N421-9					
N421-10	28.6	13.2	58.3	41.8	1.39
N421-11		•			
N421-12					
N421-14					
N421-15					
N421-17					
N421-18	31	15.1	54	46.1	1.17
N421-19					
N421-20					
N421-21					

NAME	Methylene 1.5-1.Oppm	Methyl 1.0-0.2ppm	Aromatic A	Aliphatic H	Aro:Ali
N421-22 N421-EP	29.2	16. 3	54.6	45. 5	1.20

Jet Fuels Data - initial program work

DISTULLE	ATAG NUTT							
							lime, mor	
NAME	START	TBE	5 vol%				30 vol%	
JLI A	Q	30	33		. 5	39.33	4d. 9d	
JET A	O	16	18.16		20	23.08	∉6	28.66
JE4	O	용	4.58	10		11.92		14.58
LUBERHEM	O	10.16	16. යෙයි	20.		24.42		
TARL LIE	O	10.66	15.83	go.		23.17	25.83	
FIRODUCE	\boldsymbol{O}	8	9.66	10.		12.66	14.91	
PHUNIOU	O.	17.17	18.92		20	ಜಪ. ೦8	24.33	
CRUDELFIE	N O	9	12.5	20	. 5	22.66	24. 83	26.56
N4E3EP	O	6	8.65	11.	66	19.42	21.83	
NAMALE	O	11.€	13.75	15.	33	17.81		
NASSER	Ó	ಕ. 5	13.16	14.	66	17.16	19.5	<u>ರಿ</u> ದ
Jet Fuel	c 5							
DISTILLE	11							
NAME	50 vol%	60 val%	70 vol%	80 vo	у э	0 vol%	95 vol%	MHX
JET H	49.5	52, 25			16	60.66	62.33	66.66
JET A	31.33	34		39.	33	42.53	45.16	4£
JF4	16	17.5	19.42	21.	33	23. 33	24.83	±6
LARPHEN	34.08			43.	83	49.5		చ్1.కక
TARLITE	31.58			4.	. 5			46.17
PRODUCT	19.58				33	31.33	35.33	35.33
PHENBUT	28.91	31.16			83			37.66
URUDEPHE					37	4≓	49.5	49.5
CONCESSOR OF THE	.,							
NACGER	a6. S	ودي	31.92	35,	25			45
N424EF			30.33					<i>ڪ</i> '∋
N4ESEP	24.66	27.33	30.42					40
Jet Fuel	ls							
DISTILLE	4 I							
a constant	V - F - (2.12) - F	7 774 1	5 vol%	10 va	1 % 🌣	9) val%	30 vol%	Temperatu 40 vol%
	STARI		⊕ ∀ ∪1/*	and Ami	n green de man	i will will the second		
JET A	ಹಿತ							
JEL A	£4		96		102	108	114	118
JF4	සිථි ගණ				183	201	214	225
TARPHEN	≟4				177	500		228
FARETTE	≥4				113	124		160
PRODUCT	₫4 ∞7				212	550		238
PHENHUI	£4 .s				184	188		195
CRODEFH	.N 25	97	101		. U-7	اسانية ف	101	
N4c'at F	ೆ 5	78	95		98	188		
N4C4EF	ළ'65		150		183	207		
N4d5liF	at 5	/4	147		170	204	287	247

Jot Brueit

DISTILLAT

	re,	C										
NHME	50	Vo1%	60	vo1%	7¢	V=17	80	vol%	90 val%	95	V01%	Max
JET H								245	260		268	274
JET O								జర్వ	264		æ81	285
11.4		ادات 1		1.30		140		150	163		1//	1.79
1.44441614		241		258		278		304	330			ತಿತಿ≧
F14PdL, L.F.E.		ڭ45		264		287		300				3a(O
FORUDUCT		185		217		240		こじら	314		317	31/
LHENBUT		253		266		278		290				291
CRUDLEHEN	\ ;	198		205		213		244	260		265	265
NACGLE		256		285		323		355				355
N4c'4LF		272		300		335		355				.៩៦៦
N40151 P		d13		303		338						360

profilant

Jet Fuels

NAME 11.1 O 10.1 O 10.1 O 10.1 TARPHEN TARLITE PEUDUCT PHENBUT CRUDEPHEN	Res 0.023 0.0331 0.0146 0.081 0.1514 0.0477 0.1312 0.0545	Dist 0.962 0.9583 0.9747 0.913 0.8476 0.944 0.8624	Loss 0.0159 0.0086 0.0106 0.001 0.0119 0.007	GRAMS
N4835EP	0.1782	0.8176	0.004±	wt%
N4846EP	0.2128	0.782	0.005±	
N48505P	0.2432	0.7526	0.0042	

AVE PRE	AGE 1ST STA 7 7 20 20 20 20	SS MAX PRES AGE 2ND STAG 750 700 233 277 220 250 250	E 1ST STAG	6 29.6 6 25.0	0 0 0 0		
				•		RES	TIME
RUN #	COAL SOL	VENT	ADD1	ADDS	TAG		STAGE
N424	NONE TAR	R DIL (PROD	N423) NONE	ENGLEHARD	S-661 12/	16/87 60	
N425	NONE TAR	R OIL (PROD	N423) NONE	ENGLEHARD	S-661 12/	18/87 60	
N420	NONE TAR	≀ OIL	NONE	KATALCO 6	60 097	15/87 60	
N419	NONE TAR	S OIL	NONE	NT 550	097	11/87 60	
N418	NONE TAR	≀ DIL	NONE	NT 550	09/	09/87 60	
N433	NONE TAR	ROIL	NONE	SHELL 424	067	09/88 60	
N410	NONE TAR	ROIL	NONE	SHELL 424	087	13/87 60	
N432	NONE TAR		NONE			02/88 60	
N414	NONE TAR		NONE			01/87 60	
N408	NONE TAR		NONE			05/87 60	
N409	NONE TAR		NONE			11/87 60	
N415	NONE TAR		NONE			02/87 60	
N413	NONE TAR		NONE			28/87 60	
N421	NONE TAR		NONE			18/87 60	
N417	NONE TAR		NONE			04/87 60	
N416	NONE TAR		NONE			03/87 60	
		R OIL (PROD			S-661 08/		
RES TIM	IE TIME	AVE TEMP	AVE TEMP	MAX TEMP	MAX TEMP	AVE PRES	
END STA	AGE SAMPLE	IST STAG	EZND STAGE	IST STAGE	2ND STAGE	IST STAGE	
· 	NÜ	150		_ 150		750	
	NO	200		200		700	
		394				2023	
	YES	390				1997	
	YES	354		**************************************		2000	
	NO	380		P3 #3 #**		2250	
	YES	394				2235	
	NO	395				2384	
	VES	387				2500	
	VEG	420				2675	
	YES	385				1435	
	YES	357		357 . 357		2000	
	7 12.33	೨೮/		35/		~OOO	

357 367 368

YES

YES

____YES

YES

YŁU

NU

			RES TIME
KUN #	COAL SOLVENT	ADD1 ADD2	DATE 1ST STAGE
NAEA	NONE TAR DIL (PROD N423)	NUME ENGLEHARD S-661	12/16/87 60
N4a5	NONE TAR DIL (PROD N423)	NONE ENGLEHARD S-661	12/18/87 60
N420	NUNE TAR OIL	NONE KATALCO 660	09/15/87 60
N419	NONE TAR OIL	NUNE NT 550	09/11/87 60
N418	NUNE TAR DIL	NUNE NY 550	09/09/87 60
N433	NONE TAR DIL	NONE SHELL 424	06/09/88 60
N410	NUNE TAR OIL	NUNE SHELL 424	Q8/13/87 CO
N43d	NOME TAR DIL	NONE SHELL 424	06/05/88 60
N414	NONE TAR OIL	NONL SHELL 424	09/01/87 60
N4OB	NOME TAR OIL	NONE SHELL 424	08/05/87 60
N409	NONE TAR DIL	NUNE SHELL 424	08/11/87 60
N415	NONE TAR OIL	NONE SHELL 424	09/02/87 60
N413	NUNE TAR OIL	NONE SHELL 424	08/28/87 60
N421	NONE TAR DIL	NONE SHELL 424	09/18/87 60
N41/	NONE TAR OIL	NONE SHELL 424	09/04/87 60
N416	NONE TAR DIL	NONE SHELL 424	09/03/8/ 60
N435	NONE TAR OIL (PROD N433)	NONE ENGLEHARD S-661	98703788 60

RES TIME	FIME	AVE	TEMP	AVE	TEMP	мах	TEMP	MAX	TEMP	AVE	PRES
END STAGE	SAMPLE	1ST	STAGE	LIND	STAGE	151	STAGE	END	STAGE	157	STAGE
	NU		150			-	150	~		_	750
	NU		200			_	200				700
···	AER.		394			_	395			-	2023
			390			_	395			_	1997
			354			_	356			_	5000
	NÜ		380			_	395			_	2250
	YES		394			_	394	~		_	2235
	NU		395			_	395			_	2384
	YES		387			_	387			_	2500
	YES		420			_	420			_	2675
	YES		385			_	387			_	1435
	YES		357			-	357				2000
	YES		357			-	357			_	1300
	YES		367			-	367				1500
	YES		350			-	363			- 	2012
	YLS		3 2 9			•	1 د د			•	1491
	ND		203			•	ಆ೦៦			•	700

AVE PRESS MAX END STAGE 1ST	STAGE 750	MAX PRESS 2ND STAGE	FEED GAS 1ST STAGE 100	GAS IN 1ST STAGE 29.6 25.0	H2S 1ST STAGE 0 0	FEED GAS 2ND STAGE
And the last	700 2033	magnitude and a contract of the contract of th	100	30.8	0.0	
and the contract of the contra	2020 2077		- 100 100	40.1 27.4	Ó	
	2250		100	100.8 31.5	0 0	
the state of the s	2235 2484		100	113.6 45.0	O O	
New of the last state of the l	2500 2675		100 100	40.0	ō	ends game often dend verse same of the deld offen serve
	1570		100 100	35.9 39.6	0	
	2000 1300	print Type made that hope they peem their peem.	100	16.2 8.7	Ů Ú	
	1500 2022		_ 100 100	33.8	Ö	
	1491 750	ments there would write cross forms about these ments	100 100		Q	Alta data Maja wite Hall data Maja 1188 Maja at 18

GAS ZND		H2S 2ND	STAGE	AR COAL	MAF COAL	% HE COAL		% ASH COAL	WATER ADDED	SOLVENT IN
	Ø		Q	C)	0	Q	Q	U	1016.9
	Ó		O	C)	Ŏ	Q	Q	Q	964.4
	Ú		Ö	C)	O.	O	Q	Õ	1029.2
	Q		Ō	()	Q .	Q	O	Ö	1028.1
	Ó		O	C) ·	O	O	O	O	1024.3
	Ó		Q	()	O	O	O	Ō	1031.2
	Q		O	C)	Q	O	Ö	Q	1010.1
	Q		O	C)	Q .	* O	0	Ō	1191.7
	Q		O	C)	O	O	Q	Q	1015.5
	Ü		O	C)	Ö	0	O	Q	1003.5
	Q		Ö	Ç)	Q	O	Ö	Q	1008.1
	Q		O	C)	Ö	Ŏ	Ó	Q	1018.7
	Q		O	C)	Q	0	0	Ò	1013.3
	Q		Ŏ	()	Q	O	0	Ó	1027.6
	Q		Q	C)	Ŏ.	Q	Q.	Ų	1017.1
	O		Q	(_	}	O	O	Q	Q	1026.6
										105ವ 3

ADDZ	Wil	SLURRY	LIQUID	LIGHT	MOLES	MOLES	MOLES
110		CHARGED	F'ROD	UILS	GAS OUT	H2 LEFT	CO LEFT
	150	1145.6	1103.9	O	31.24592	O	0
	150	1106.1	1053.7	O	17.09483	Ü	O
	150	1159.3	1087.8	90.6	44.34515	O	Q
	150	1156	1103.1	81.5	27.41405	Ú	Q
	150	1154.5	1120.69	원근. 1	18.73569	Ö	Ö
	150	1163.96	1100.B	Ö	8.344069	Q	Q
	150	1116.9	1003	60	18.06933	Q	O
	149	1326	1242.1	70.2	30.66688	O	Q
	150	1144.1	1027.8	72	27.43653	Q	O
	150	1126.4	994.4	. 72	17.42364	O	Ö
	150	1115.4	1036.2	85.1	9.481692	0	Ö
	150	1149	1041.8	92.2	26.85358	O	Ó
	150	1139.6	1100.3	72	7.566258	Q	O
	150	1169.9	1091.8	73.2	12.70832	O	O
	150	1146.6	1082.3	48.6	19.44187	O	Ö
	159	1158	1118	47.8	17.04600	O	Ú.
14	1).4	1185.1	1150.7	1.8	13.656		

		END PRODU	JCT		BY DIFF	TOTAL	
RUN #	CARBON	HYDROGEN	NITROGEN	SULFUR	OXYGEN	HETERO	H:C RATIO
N424-EP	0.8725	0.1016	0.0029	0.0004	0.0226	0.0259	1.3847
N4::5614	0.8678	0.1014	0.0029	0.0000	0.0279	0.0308	1.3894
N4EO-EF	0.846	0.1041	0.0027	0.0000	0.0472	0.0499	1.4632
N419-EP	O.8627	0.1095	0.0008	0.0000	0.0270	0.0278	1.5093
N418-EP	0.8586	0.1042	0.0043	0.0000	0.0329	0.0372	1.4431
N453-ヒド	0.8863	0.1137	Q.	0.0000	0.0000	Ů.	1.5255
N410-EP	0.8745	0.1141	0.0004	0.0006	0.0104	0.0114	1.5515
N432-EH	0.8772	0.1183	0.0006	0.0000	0.0099	0.0105	1.5223
N414-EP	0.8723	0.1171	0.0000	0.0002	0.0104	0.0106	1.5963
N408-EP	0.8715	0.1169	0.0000	0.0008	0.0108	0.0116	1.5950
N409-EP	Q . 868 0	0.1082	0.0028	0.0007	0.0203	0.0238	1.4823
N415-EP	0.8631	0.1096	0.0001	0.0000	0.0272	0,0273	1.5100
N413-64	0.8557	0.1012	0.0022	0.0012	0.0397	0.0431	1.4063
N421~LH	0.8433	0.1071	O. 0056	0.0000	0.0440	0.0496	1.5102
N417-EP	0.8454	0.1096	0.0001	0.0000	0.0449	0.045	1.5416
N416LP	0.8382	0.0969	0.0013	0.0010	0.0626	0.0649	1.3747
	0.8856	0.1127	Q.	Q.	0.0017	0.0017	1.5132

				cic c	9.7		27.9
17.8	1.8	೭. ಟ		26.6			
18.3	1.5	2.4		25.8	9.4		27.9
	1.	1.9		25.7	11.5		28.2
16.8				24.i	12.3		≥9.7
1 ਤੇ. 'ਤ	1	=.4					29.5
16.9	೭.3	1.3		24.1	9.8		C7. U
11.1	1	1.1	0.3	19	12.7	3.3	30.4
1 (5) 1	0.6	1.3	0.4	19.3	16.2	3.8	27.9
10.1			0.3	18.6	14.3	4	28.7
10.5	0.9	1.2				3	28
14. ≥	0.5	1	0.4	22.4	11.9	٦	
12.8	1.1	2.1		23.1	13.4		ان
16.3	1.3	a.5	0.7	24.2	10.9	2.8	25.5
14.9	1.7	22. 22		23.8	1 😅		29. ≥
				21.9	12.3		32.1
11.1	1.4	≥.6					27.4
18.4	1.9	2.6		25.9	9.5		
9.85	1.76	0.62		19.72	14.96	1.25	29.78

				LIQUID	LIGUID	CARBON	HYDROGEN
				LOSS	RECOVERY	BAL	BAL
13.5	58.7	41.4	1.42	41.7	96.36%		
14. /	57.4	42.6	1.35	52.4	95.26%	4 98.72%	
15.7	56.3	ن) , ق 4	1.29	71.5	101.65%	4 102.67%	119.84%
16.5	53.7	46.E	1.16	52.9	102.47%	4 105.54%	127.08%
16.1	54.4	45.6	1, 19	33.31	104.197	4 106.79%	122.94%
10.1	<u> </u>		·	63.16	94.57%	4 100.07%	121.78%
21.1	45.2	54.0	0.82	113.9	95.17%	4 99.37%	122.98%
	,012	4 , , 4		83.9	93.97%	4 103.65%	125.87%
20.3	47.9	58	0.92	116.3	96.13%	4 100.117	
21.5	45.8	54. d	0.85	132	94.677	4 98.50%	
18.7	50.4	49.7	1.01	79. d	100.53%	4 104.18%	123.18%
17.5	52.5	47.5	1.11	107.2	98.69%	4 101. J	122.50%
15.8	55.0	44.1	1.27	ن ما <i>لا</i> ن	104.875	4 105.0JX	117,99%
16.3	54.6	45. b	1.39	78.1	99.587	4 100.E67	4 120.78%
18.5	ن. د 49.	50.6	0.97	64.3	98.63%	4 90.55%	4 122.42%
14. 4	58.3	41.6	1.40	40	100.677	4 100.75%	4 110.48%
17.50	46.87	53.13		34.4	97. 257	4 99. 327	4 101, 29%

NITRUGEN	SULFUR	OXYGEN
BAL	BAL.	BAL
121.50%	43.36%	38.48%
120.117	0.00%	46.88%
52.787	4 0.00%	73.81%
15.777	Q.QQ7	42.5/%
86.15%	4 0.00%	52.73%
0.00%	4 0.00%	0.00%
7. 3ごフ	4 14.647	15.23%
11.427	4 0.00%	15.07%
0.007	4.93%	15.38%
0.00%	4 19.427	15.73%
54.137	4 18.04%	31.40%
1.907	4 0.00%	41.30%
43.527	4 31.65%	62.83%
107. 급47	4 0.007	67.41%
1.90%	4 0.00%	68.13%
25.1/	4 25.81%	96.96%
0.007	4 0.00%	0.00%

		END PRODU	JCT		BY DIFF	TOTAL	
RUN #	CARHON	HYDRUGEN	NITROGEN	SULFUR	DXYGEN	HETERO	H:C RALIO
N4Q8~EP	0.8715	0.1169	0.0000	0.0008			
N4O9~EP	0.8680	0.1082	0.0028	0.0007	0.0803	0.0238	
N410-EL	0.8745	0.1141	0.0004		0.0104		
N413=EP	0.8557	0.1018	0.0022	0.0012			1.4063
N414-EF	0.8723	0.11/1	0.0000				1.5963
N415 EF		0.1096	0.0001	0.0000			
N416 EF	0.8382		0.0013	0.0010	0.0626	0.0649	1.3747
N417 ~EF	0.8454	0.1096	0.0001	0.0000		9.045	
N418-EF		0.1042	0.0043	0.0000	0.0329	0.0378	1.4431
N419-EF	0.8627	0.1095	0.0008	0.0000		0.0278	1.5093
N420-ER		0.1041		0.0000	0.047일	0.0499	1.4000
N421-EF	0.8433	0.1071	0.0056	0.0000	0.0440	O.0496	1.510d
		END PRUDL	JOT		BY DIFF		
RUN #	CARBON	HYDROGEN	NITRUGEN	SULFUR	OXYGEN	HETERO	H:U RALIU
N424-EN	o.8725	0.1016	0.0029	0.0004	0.0226	0.0259	1.3847
N425-EP	0.8678	0.1014	0.0029	0.0000	0.0279	0.0308	1.3894
N432-EP	0.8772	0.1123	0.0006	0.0000	0.0099	0.0105 0	1.5೭ಜನ
N433-EP	0.8853	0.1137	O	0.0000	0.0000	Ò	
N435-EF	0.8856		O	O			
PRUD	Aromatic	Phenolic	Methoxy/f	Acenaph.	Alpha to	Beta to A	ACyclohex
JET A	9.0-5.9pp		04.4-3.5pj	ა3.5−3.3pp	o3. 3–1 . 9թլ	o1.9-1.5pg	o1.43ppm
N408EP	10.5	0.9		0.3	18.6	14.3	4
N403-EH	14.E	0.5	1	0.4	22.4	11.9	
N410~EP	11.1	1	1.1	0.3	19	12.7	3.3
N413-EF	16.3	1.3	2.5	0.7	24. ≥	10.9	2.8
N414-EP	19.1	1.3 0.6	1.3	0.4	19 24.2 19.3	16. ಆ	a. 8
N415-EP	12.8	1.1	근. 1		23.1	13.4	
N416-EF	18.4	1.9	2.6		25.9	9.5	
N417-EH	11.1	1.4	2.6		21.9	12.3	
N415-EF	16.9	ವ.ತ	2.3		24.1	9.8	
N419-EP	13.9	1	2.4		24.1	12.3	
N420-EP	16.2	1	1.9		25.7	11.5	
N4@1 · EH	14.9	1.7	2.2		23.8	1 ₩	
의4일4 - 분분	17.8	1.8	2.8		26.6		
N4atb=E.P	18.3	1.5	2.4		25.8	9.4	
N432-EP							
N433-EF							
N435-EP	9.85	1.76	0.62		19, 72	14.96	1.25

(TOME)	Methylene	eMethyl					
J1.1 +1	-	51.0~0.2ppAr	no Hail i i	Ali H2	Aro:Ali		
NAOR EP	≥8.7		45.8	54.2			
N409-EP	≥8		50.4	49.7			
N410-EP	ತಲ. 4						
N413-EP			55.9	54.8 44.1	1.27		
N414-EP	27.9		47.9				
FRUD	Methylene						
JET A	-	51.0-0.dppAr	oo H2 (41i H2	Aro:Ali		
N415-EP			52.5	47.5	1.11		
N416-EF				41.6	1.40		
N417-EF			49.3		0.97		
N418-EF			54.4	45.6	1.19		
N419-EP			53.7	46.2			
N4EU-EP		154					
N421-EP			54.6	43.6 45.5	1.20		
N424-EP	27.9	13.5	58. 7	41.4	1.42		
NASSEL	27.9	14. /		42.6	1.35		
N435-EF							
N435-EF							
	£9.78	17, 52	46.87	53, 13	០. 88		
	WITH AL			_IQUID ST			
TITLE C.	772 111 112	35C 114	•		Transfer III		
	FIGUID	LIQUID CA	วยชาตุเก	HYDROGEN	NEED DOOR N	CHICHD	OXYGEN
		ETERTIE CL	ardun i	TIDRUGEN	MITIKOGEN	SULFUR	UNIULIN
RUN #							
RUN # N408-EP	LOSS	RECOVERY BA	a L 1	BAL	BAL	BAL	BAL
N408-EP	LOSS 132	RECOVERY BA	aL 1 98.50%	3AL 125.34%	BAL 0.00%	BAL 19.42%	BAL 15.73%
N408-EP	LOSS 132 79.2	RECOVERY BA 94.67% 100.53%	98.50% 104.18%	3AL 125.34% 123.18%	BAL 0.00% 54.13%	BAL 19.42% 18.04%	BAL 15.73% 31.40%
N408-EP N409-EP	LOSS 132 79.2 113.9	RECOVERY BA 94.67% 100.53% 95.17%	98.50% 104.18% 99.37%	3AL 125.34% 123.18% 122.98%	BAL 0.00% 54.13% 7.32%	BAL 19.42% 18.04% 14.64%	BAL 15.73% 31.40% 15.23%
N408-EP N409-EP N410-EP N413-EP	LOSS 132 79.2 113.9 39.3	RECOVERY BA 94.67% 100.53% 95.17% 102.87%	AL 18.50% 104.18% 199.37% 105.09%	3AL 125.34% 123.18% 122.98% 117.90%	BAL 0.00% 54.13% 7.32% 43.52%	BAL 19.42% 18.04% 14.64% 31.65%	BAL 15.73% 31.40% 15.23% 62.83%
N408-EP N409-EP N410-EP	LOSS 132 79.2 113.9 39.3 116.3	RECOVERY BA 94.67% 100.53% 95.17% 102.87% 96.13%	AL 98.50% 104.18% 99.37% 105.09%	8AL 125,34% 123,18% 122,98% 117,90% 127,48%	BAL 0.00% 54.13% 7.32% 43.52% 0.00%	BAL 19.42% 18.04% 14.64% 31.65% 4.93%	BAL 15.73% 31.40% 15.23% 62.83% 15.38%
N408-EP N409-EP N410-EP N413-EP N414-EP	LOSS 132 79.2 113.9 39.3 116.3	RECOVERY BA 94.67% 100.53% 95.17% 102.87% 96.13% 98.69%	98.50% 98.50% 104.18% 99.37% 105.09% 100.11%	8AL 125.34% 123.18% 122.98% 117.90% 127.48% 122.50%	BAL 0.00% 54.13% 7.32% 43.52% 0.00% 1.90%	BAL 19.42% 18.04% 14.64% 31.65% 4.93% 0.00% 25.81%	BAL 15.73% 31.40% 15.23% 62.83% 15.38% 41.30% 96.96%
N408-EP N409-EP N410-EP N413-EP N414-EP N415-EP N416-EP	LOSS 132 79.2 113.9 39.3 116.3 107.2	RECOVERY BA 94.67% 100.53% 95.17% 102.87% 96.13% 98.69% 100.67%	98.50% 98.50% 104.18% 99.37% 105.09% 100.11% 101.70%	8AL 125.34% 123.18% 122.98% 117.90% 127.48% 122.50%	BAL 0.00% 54.13% 7.32% 43.52% 0.00% 1.90% 25.17%	BAL 19.42% 18.04% 14.64% 31.65% 4.93% 0.00% 25.81%	BAL 15.73% 31.40% 15.23% 62.83% 15.38% 41.30% 96.96%
N408-EP N409-EP N410-EP N413-EP N414-EP N415-EP N416-EP N417-EP	LOSS 132 79.2 113.9 39.3 116.3 107.2 40 64.3	RECOVERY BA 94.67% 100.53% 95.17% 102.87% 96.13% 98.69% 100.67% 98.63%	98.50% 104.18% 99.37% 105.09% 100.11% 101.70% 100.75%	3AL 125.34% 123.18% 122.98% 117.90% 127.48% 122.50% 110.48%	BAL 0.00% 54.13% 7.32% 43.52% 0.00% 1.90% 25.17% 1.90%	BAL 19.42% 18.04% 14.64% 31.65% 4.93% 0.00% 25.81%	15.73% 31.40% 15.23% 62.83% 15.38% 41.30% 96.96% 68.13%
N408-EP N409-EP N410-EP N413-EP N414-EP N415-EP N416-EP	132 79.2 113.9 39.3 116.3 107.2 40 64.3 33.81	RECOVERY BA 94.67% 100.53% 95.17% 102.87% 96.13% 98.69% 100.67% 98.63% 104.18%	98.50% 104.18% 99.37% 105.09% 100.11% 101.70% 100.75% 99.55%	3AL 125.34% 123.18% 122.98% 117.90% 127.48% 122.50% 110.48% 122.42%	BAL 0.00% 54.13% 7.38% 43.58% 0.00% 1.90% 25.17% 1.90% 86.15%	BAL 4 19.42% 4 18.04% 4 14.64% 4 31.65% 4 93% 4 0.00% 4 25.81% 6 0.00%	BAL 15.73% 31.40% 15.23% 62.83% 15.38% 41.30% 96.96% 68.13% 52.73%
N408-EP N409-EP N410-EP N413-EP N414-EP N415-EP N416-EP N417-EP N418-EP N419-EP	LOSS 132 79.2 113.9 39.3 116.3 107.2 40 64.3 33.81 52.9	RECOVERY BA 94.67% 100.53% 95.17% 102.87% 96.13% 98.69% 100.67% 98.63% 104.18%	98.50% 104.18% 99.37% 105.09% 100.11% 101.70% 100.75% 99.55% 106.79%	3AL 125.34% 123.18% 122.98% 117.90% 127.48% 122.50% 110.48% 122.42% 127.08%	BAL 0.00% 54.13% 7.32% 43.52% 0.00% 1.90% 25.17% 1.90% 86.15%	BAL 4 19.42% 4 18.04% 4 14.64% 51.65% 4 93% 4 0.00% 4 0.00% 6 0.00%	BAL 15.73% 31.40% 15.23% 62.83% 15.38% 41.30% 96.96% 68.13% 52.73% 42.57%
N408-EP N409-EP N410-EP N413-EP N414-EP N415-EP N416-EP N417-EP N418-EP N419-EP	LOSS 132 79.2 113.9 39.3 116.3 107.2 40 64.3 33.81 52.9 71.5	RECOVERY BA 94.67% 100.53% 95.17% 102.87% 96.13% 98.69% 100.67% 98.63% 104.18% 102.47% 101.65%	98.50% 104.18% 99.37% 105.09% 100.11% 101.70% 100.75% 99.55% 106.79% 105.54%	3AL 125.34% 123.18% 122.98% 117.90% 127.48% 122.50% 110.48% 122.42% 122.94% 127.08%	BAL 0.00% 54.13% 7.32% 43.52% 0.00% 1.90% 25.17% 1.90% 86.15% 58.78%	BAL 19.42% 18.04% 14.64% 31.65% 4.93% 0.00% 25.81% 0.00% 0.00% 0.00%	BAL 15.73% 31.40% 15.23% 62.83% 15.38% 41.30% 96.96% 68.13% 52.73% 42.57% 73.81%
N408-EP N409-EP N410-EP N413-EP N414-EP N415-EP N416-EP N417-EP N418-EP N419-EP N420-EP N421-EP	132 79.2 113.9 39.3 116.3 107.2 40 64.3 33.81 52.9 71.5 78.1	RECOVERY BA 94.67% 100.53% 95.17% 102.87% 96.13% 98.69% 100.67% 98.63% 104.18% 102.47% 101.65% 99.58%	98.50% 104.18% 99.37% 105.09% 100.11% 101.70% 100.75% 99.55% 106.79% 105.54% 102.67%	3AL 125, 34% 123, 18% 122, 98% 117, 90% 127, 48% 122, 50% 110, 48% 122, 42% 122, 94% 127, 08% 119, 84%	BAL 0.00% 54.13% 7.32% 43.52% 0.00% 1.90% 25.17% 1.90% 86.15% 15.77% 52.78%	BAL 19.42% 18.04% 14.64% 31.65% 4.93% 0.00% 25.81% 0.00% 0.00% 0.00%	BAL 15.73% 31.40% 15.23% 62.83% 15.38% 41.30% 96.96% 68.13% 52.73% 42.57% 73.81% 67.41%
N408-EP N409-EP N410-EP N413-EP N415-EP N415-EP N416-EP N417-EP N418-EP N419-EP N420-EP N421-EP	132 79.2 113.9 39.3 116.3 107.2 40 64.3 33.81 52.9 71.5 78.1	RECOVERY BA 94.67% 100.53% 95.17% 102.87% 96.13% 98.69% 100.67% 98.63% 104.18% 102.47% 101.65% 99.58% 96.36%	98.50% 104.18% 99.37% 105.09% 100.11% 101.70% 100.75% 99.55% 106.79% 105.54% 102.67% 100.26%	3AL 125, 34% 123, 18% 122, 98% 117, 90% 127, 48% 122, 50% 110, 48% 122, 42% 122, 94% 127, 08% 119, 84% 120, 78%	BAL 0.00% 54.13% 7.32% 43.52% 0.00% 1.90% 25.17% 1.90% 46.15% 15.77% 52.78% 107.24%	BAL 19.42% 18.04% 14.64% 31.65% 4.93% 0.00% 25.81% 0.00% 0.00% 0.00% 43.36%	BAL 15.73% 31.40% 15.23% 62.83% 15.38% 41.30% 96.96% 68.13% 52.73% 42.57% 73.81% 67.41% 38.48%
N408-EP N409-EP N410-EP N413-EP N415-EP N415-EP N416-EP N417-EP N418-EP N419-EP N420-EP N421-EP N424-EP	132 79.2 113.9 39.3 116.3 107.2 40 64.3 33.81 52.9 71.5 78.1 41.7	RECOVERY BA 94.67% 100.53% 95.17% 102.87% 96.13% 98.69% 100.67% 98.63% 104.18% 102.47% 101.65% 99.58% 96.36%	98.50% 104.18% 99.37% 105.09% 100.11% 101.70% 100.75% 99.55% 106.79% 105.54% 102.67% 100.26% 100.40% 98.72%	3AL 125, 34% 123, 18% 122, 98% 117, 90% 127, 48% 122, 50% 110, 48% 122, 42% 122, 94% 127, 08% 119, 84% 120, 78% 95, 24%	BAL 0.00% 54.13% 7.32% 43.52% 0.00% 1.90% 25.17% 1.90% 46.15% 15.77% 52.78% 107.24% 120.11%	BAL 19.42% 18.04% 14.64% 31.65% 4.93% 0.00% 25.81% 0.00% 0.00% 0.00% 43.36% 0.00%	BAL 15.73% 31.40% 15.23% 62.83% 15.38% 41.30% 96.96% 69.13% 52.73% 42.57% 73.81% 67.41% 38.48% 46.88%
N408-EP N409-EP N410-EP N413-EP N414-EP N415-EP N415-EP N415-EP N419-EP N420-EP N421-EP N424-EP N425-EP	LOSS 132 79.2 113.9 39.3 116.3 107.2 40 64.3 33.81 52.9 71.5 78.1 41.7 52.4 83.9	RECOVERY BA 94.67% 100.53% 95.17% 102.87% 96.13% 98.69% 100.67% 98.63% 104.18% 102.47% 101.65% 99.58% 96.36% 96.36% 95.26% 98.97%	98.50% 104.18% 99.37% 105.09% 100.11% 101.70% 100.75% 99.55% 106.79% 105.54% 106.26% 100.40% 98.72%	3AL 125.34% 123.18% 122.98% 117.90% 127.48% 122.50% 110.48% 122.94% 127.08% 127.08% 129.84% 95.24% 93.97% 125.87%	BAL 0.00% 54.13% 7.32% 43.52% 0.00% 1.90% 25.17% 1.90% 86.15% 15.77% 52.78% 107.24% 121.50% 120.11%	BAL 19.42% 18.04% 14.64% 31.65% 4.93% 0.00% 25.81% 0.00% 0.00% 0.00% 43.36% 0.00%	BAL 15.73% 31.40% 15.23% 62.83% 15.38% 41.30% 96.96% 69.13% 52.73% 42.57% 73.81% 67.41% 38.48% 46.88%
N408-EP N409-EP N410-EP N413-EP N414-EP N415-EP N415-EP N415-EP N419-EP N420-EP N421-EP N424-EP N425-EP	LOSS 132 79.2 113.9 39.3 116.3 107.2 40 64.3 33.81 52.9 71.5 78.1 41.7 52.4 83.9	RECOVERY BA 94.67% 100.53% 95.17% 102.87% 96.13% 98.69% 100.67% 98.63% 104.18% 102.47% 101.65% 99.58% 96.36%	98.50% 104.18% 99.37% 105.09% 100.11% 101.70% 100.75% 99.55% 106.79% 105.54% 106.26% 100.40% 98.72%	3AL 125.34% 123.18% 122.98% 117.90% 127.48% 122.50% 110.48% 122.94% 127.08% 127.08% 129.84% 95.24% 93.97% 125.87%	BAL 0.00% 54.13% 7.32% 43.52% 0.00% 1.90% 25.17% 1.90% 86.15% 15.77% 52.78% 107.24% 121.50% 120.11%	BAL 19.42% 18.04% 14.64% 31.65% 4.93% 0.00% 25.81% 0.00% 0.00% 0.00% 43.36% 0.00%	BAL 15.73% 31.40% 15.23% 62.83% 15.38% 41.30% 96.96% 69.13% 52.73% 42.57% 73.81% 67.41% 38.48% 46.88%
N408-EP N409-EP N410-EP N413-EP N415-EP N415-EP N415-EP N415-EP N419-EP N420-EP N421-EP N424-EP N425-CP N435-EP	LOSS 132 79.2 113.9 39.3 116.3 107.2 40 64.3 33.81 52.9 71.5 78.1 41.7 52.4 83.9 WITH AL	RECOVERY BA 94.67% 100.53% 95.17% 102.87% 96.13% 98.69% 100.67% 98.63% 104.18% 102.47% 101.65% 99.58% 96.36% 96.36% 95.26% 98.97% DD2 IN	98.50% 104.18% 99.37% 105.09% 100.11% 101.70% 100.75% 99.55% 106.79% 105.54% 106.86% 100.40% 98.72%	BAL 125.34% 123.18% 122.98% 117.90% 127.48% 122.50% 110.48% 122.42% 123.94% 127.08% 129.84% 95.24% 93.97% 125.87% 125.87% TQUID ST	BAL 0.00% 54.13% 7.32% 43.52% 0.00% 1.90% 25.17% 1.90% 86.15% 15.77% 52.78% 107.24% 121.50% 120.11% REAM	BAL 19.42% 18.04% 14.64% 31.65% 4.93% 0.00% 25.81% 0.00% 0.00% 0.00% 43.36% 0.00% SULFUR	15.73% 31.40% 15.23% 62.83% 15.38% 41.30% 96.96% 68.13% 52.73% 42.57% 73.81% 67.41% 38.48% 46.88% 15.07%
N408-EP N409-EP N410-EP N413-EP N413-EP N415-EP N415-EP N415-EP N419-EP N420-EP N421-EP N424-EP N423-EP N435-EP	132 79.2 113.9 39.3 116.3 107.2 40 64.3 33.81 52.9 71.5 78.1 41.7 52.4 83.9 WITH AL	RECOVERY BA 94.67% 100.53% 95.17% 102.87% 96.13% 98.69% 100.67% 98.63% 104.18% 102.47% 101.65% 99.58% 96.36% 96.36% 98.97% DD2 IN	98.50% 104.18% 99.37% 105.09% 100.11% 101.70% 100.75% 99.55% 106.79% 106.67% 100.26% 100.40% 98.72%	125.34% 123.18% 123.98% 127.90% 127.48% 122.50% 110.48% 122.42% 122.94% 127.08% 119.84% 120.78% 95.24% 93.97% 125.87% TQUID ST	BAL 0.00% 54.13% 7.32% 43.52% 0.00% 1.90% 25.17% 1.90% 86.15% 15.77% 52.78% 107.24% 120.11% REAM NITROGEN BAL	BAL 19.42% 18.04% 14.64% 31.65% 4.93% 0.00% 25.81% 0.00% 0.00% 43.36% 0.00% SULFUR BAL	BAL 15.73% 31.40% 15.23% 62.83% 15.38% 41.30% 96.96% 68.13% 52.73% 42.57% 73.81% 67.41% 38.48% 46.88% 15.07% OXYGEN BAL
N408-EP N409-EP N410-EP N413-EP N413-EP N415-EP N415-EP N415-EP N419-EP N420-EP N421-EP N423-EP N423-EP RUN # N433-EP	LOSS 132 79.2 113.9 39.3 116.3 107.2 40 64.3 33.81 52.9 71.5 78.1 41.7 52.4 83.9 WITH AL	RECOVERY BA 94.67% 100.53% 95.17% 102.87% 96.13% 98.69% 100.67% 98.63% 104.18% 102.47% 101.65% 99.58% 96.36% 96.36% 96.36% 98.97% DD2 IN	98. 50% 104. 18% 99. 37% 105. 09% 100. 11% 101. 70% 100. 75% 99. 55% 106. 79% 105. 54% 106. 40% 98. 72% 103. 65% ARBON AL	BAL 125.34% 123.18% 123.98% 117.90% 127.48% 122.50% 110.48% 122.42% 122.94% 127.08% 119.84% 120.78% 95.24% 93.97% 125.87% IQUID ST	BAL 0.00% 54.13% 7.32% 43.52% 0.00% 1.90% 25.17% 1.90% 86.15% 15.77% 52.78% 107.24% 121.50% 120.11% REAM NITROGEN BAL 0.00%	BAL 19.42% 18.04% 14.64% 31.65% 4.93% 0.00% 25.81% 0.00% 0.00% 40.00% 40.00% 50.00%	BAL 15.73% 31.40% 15.23% 62.83% 15.38% 41.30% 96.96% 68.13% 52.73% 42.57% 73.81% 67.41% 38.48% 46.88% 15.07% OXYGEN BAL 0.00%
N408-EP N409-EP N410-EP N413-EP N413-EP N415-EP N415-EP N415-EP N419-EP N420-EP N421-EP N423-EP N423-EP RUN # N433-EP	LOSS 132 79.2 113.9 39.3 116.3 107.2 40 64.3 33.81 52.9 71.5 78.1 41.7 52.4 83.9 WITH AL	RECOVERY BA 94.67% 100.53% 95.17% 102.87% 96.13% 98.69% 100.67% 98.63% 104.18% 102.47% 101.65% 99.58% 96.36% 96.36% 98.97% DD2 IN	98. 50% 104. 18% 99. 37% 105. 09% 100. 11% 101. 70% 100. 75% 99. 55% 106. 79% 105. 54% 106. 40% 98. 72% 103. 65% ARBON AL	BAL 125.34% 123.18% 123.98% 117.90% 127.48% 122.50% 110.48% 122.42% 122.94% 127.08% 119.84% 120.78% 95.24% 93.97% 125.87% IQUID ST	BAL 0.00% 54.13% 7.32% 43.52% 0.00% 1.90% 25.17% 1.90% 86.15% 15.77% 52.78% 107.24% 121.50% 120.11% REAM NITROGEN BAL 0.00%	BAL 19.42% 18.04% 14.64% 31.65% 4.93% 0.00% 25.81% 0.00% 0.00% 40.00% 40.00% 50.00%	BAL 15.73% 31.40% 15.23% 62.83% 15.38% 41.30% 96.96% 68.13% 52.73% 42.57% 73.81% 67.41% 38.48% 46.88% 15.07% OXYGEN BAL 0.00%